• Title/Summary/Keyword: Slot structure

Search Result 406, Processing Time 0.023 seconds

Effect of joint Details on Fatigue Properties of a Slot Structure

  • Youn, J.G.;Kim, H.S.;Park, D.H.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.1
    • /
    • pp.51-57
    • /
    • 2001
  • Effect of the joint details on the stress distribution over a slot structure has been studied in order to improve its fatigue life using a finite element analysis. The joint details of interest are the radius and height of scallop at the stiffener as well as the mis-alignment between the stiffener and longitudinal member. For a slot structure currently used, the stiffener heel is subjected to the maximum stress for a given external load, where is a potential fatigue crack initiation site. The stresses at the stiffener heel and toe decrease both by increasing the scallop radius and more significantly by increasing the mis-alignment while no notable effect of the scallop height on it is appreciated. A proper combination of these factors makes it possible to reduce the stresses at the stiffener heel and In, theoretically, more than 50%. This is attributed to the modification of the stress distribution over the slot structure including the transition of the maximum stressed region from the stiffener heel to the slot surface of the transverse web. Such then results in a g[eat improvement of the fatigue life of the slot structure.

  • PDF

The design of a 920MHz compact RFID reader antenna of slot structure using the Taguchi's Method (Slot 구조를 이용한 920MHz 소형 RFID 리더 안테나 다구찌설계 연구)

  • Kwon, So-Hyun;Ko, Jae-Hyeong;Kim, Hyeong-Seok
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.289-292
    • /
    • 2009
  • In this paper, an optimum design center frequency proposes portable RFID reader antenna that is 920MHz frequency using the Taguchi's Method. Proposed antenna is cut corner of opposite angle and it's structure that have slots in four sides microstrip patch of a perfect square shape. This slot structure can miniaturize microstrip patch antenna and confirmed through an experiment that size of antenna about 18% decreases than structure that slot does not exist. Because compact antenna that have structure of slot changes according to complex design variables, analysis and experimental design for minimization of experiment number of times are required for optimum antenna design. In this research, designed antenna that have optimum structure when introduce and designs table of orthogonal arrays of the Taguchi's Method been experimental design that can minimize analysis and experiment number of times, achieve responsiveness analysis of main elements and analyzes the effect and minimizes design repeat with analysis result. Presented experiment result about antenna special quality that permittivity is 4.4 and manufactures to board of Epoxy 3.2T.

  • PDF

Heterogeneously Integrated Thin-film Lithium Niobate Electro-optic Modulator Based on Slot Structure

  • Li, Xiaowei;Xu, Yin;Huang, Dongmei;Li, Feng;Zhang, Bo;Dong, Yue;Ni, Yi
    • Current Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.323-331
    • /
    • 2022
  • Electro-optic modulator (EOM) takes a vital role in connecting the electric and optical fields. Here, we present a heterogeneously integrated EOM based on the lithium niobate-on-insulator (LNOI) platform. The key modulation waveguide structure is a field-enhanced slot waveguide formed by embedding silicon nanowires in a thin-film lithium niobate (LN), which is different from the previously reported LN ridge or etchless LN waveguides. Based on such slot structure, optical mode field area is reduced and enhanced electric field in the slot region can interact well with LN material with high Electro-optic (EO) coefficient. Therefore, the improvements in both aspects have positive effects on enhancing the modulation performance. From results, the corresponding EOM by adding such modulation waveguide structure achieves better performance, where the key half-wave-voltage-length product (V𝜋L) and 3 dB EO bandwidth are 1.78 V·cm and 40 GHz under the electrode gap width of only 6 ㎛, respectively. Moreover, Lower V𝜋L can also be achieved. With these characteristics, such field-enhanced waveguide structure could further promote the development of LNOI-based EOM.

A Design and Manufacture of Modified Rhombus Slot UWB antenna with Fork-shaped-Feedline (포크 모양의 급전 구조를 갖는 변형된 마름모 슬롯 UWB 안테나 설계 및 제작)

  • Ha, Sung-Jea;Yoon, Joong-Han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.7
    • /
    • pp.1221-1228
    • /
    • 2016
  • In this paper, we propose a modified rhombus slot UWB(Ultra Wide Band) antenna with fork-shaped feeding structure. The proposed antenna is modified rhombus slot structure and fork-shaped feeding structure to get ultra-wideband characteristics for UWB communication. Modified rhombus slot structure consists of slot shaped which eliminated upper and lower part of the basic rhombus slot. The antenna is designed on an FR-4 substrate of which the dielectric constant is 4.4, and its overall size is $34mm(W_1){\times}34mm(L_1){\times}1mm(t)$, and its slot antenna size is $30mm(W_2){\times}16.75mm(L_3+L_4)$. After carrying out the simulation of each parameters, optimized values are obtained. From the fabricated and measured results, return loss of the proposed antenna satisfied Return Loss -10dB in 3.1 ~ 10.6 GHz. And measured results of gain and radiation patterns characteristics displayed for operating bands.

CPW Fed Ultra Wide Band Slot Antenna (초광대역 CPW 급전 슬롯안테나)

  • 김기수;박동국
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.7
    • /
    • pp.663-668
    • /
    • 2003
  • In this paper, a CPW fed slot antenna with novel broadband feed structure is presented. To enhance the impedance bandwidth of the slot antenna we proposed the broadband feed structure of new bow-tie slot which is combined with four λ/2 rectangular radiation slot and inductively coupled. The measured 10 dB impedance bandwidth is about 60 %(5.2∼9.4 GHz) and the simulated antenna gain is about 6 dBi at 7.36 GHz.

A Dual-Band Gap-Filler Antenna Design with a Phi-Shaped Slot

  • Park, Sang Yong;Park, Jong Kweon
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.2
    • /
    • pp.111-114
    • /
    • 2015
  • In this paper, we have proposed dual-band Phi-shaped slot gap filler antenna for satellite internet service applications. Some properties of the antenna such as return loss, radiation pattern, and gain have been simulated and measured. The proposed antenna has a Phi-shaped slot on the circular patch and is fabricated on the TLX-9 substrate. The radius of the circular patch is 25 mm, and it has a coaxial feeding structure. The dual-band Phi-shaped slot gap filler antenna has high-gain, small-size, simple-structure, and good radiation patterns at each band. The operating frequency band can be tuned by adjusting the length AL and FL of the Phi-shaped slot.

Design of Magnetic Slot Wedge Shape for Reducing Cogging Torque in Permanent Magnet Synchronous Generator of Direct Drive Type (직구동 방식 영구자석 동기 발전기의 코깅 토크 저감을 위한 자성체 슬롯 ��지 형상 설계)

  • Moon, Jae-Won;Kim, Seung-Joo;Choi, Han-Suk;Park, Su-Kang;Kim, Bong-Ju;Kwon, Byung-Il
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.3
    • /
    • pp.80-87
    • /
    • 2012
  • This paper suggests the slot wedge shape for reducing the cogging torque of a direct-drive permanent magnet synchronous generator for a bike. To consider easy coil winding, we applied a structure of open slot for the permanent magnet synchronous generator (PMSG). Because the cogging torque of PWSG with the open slot is very large, we are designed the appropriate specifications of the PMSG by selected the appropriate material of slot wedge and various slot wedge shapes. The prototype model is selected by design theory for reducing cogging torque and maximizing efficiency of PMSG. And the detailed structure design of the model was designed by the loading distribution method. The PMSG models were analyzed by finite element method. Finally, we have suggested appropriate material of slot wedges and its shape which has benefit to further reducing cogging torque and preventing decreasing of the generating power.

A Novel Feed Structure for a Broadband Microstrip Circular Slot Antenna (광대역 마이크로스트립 원형 슬롯 안테나를 위한 새로운 급전 구조)

  • 서영훈;박익모;신철재
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.6
    • /
    • pp.948-957
    • /
    • 2001
  • We proposed a novel feed structure for a broadband circular slot antenna. The proposed antenna has a circular slot, a radiating element, and a novel microstrip feed structure which is composed of a 50 Ω microstrip feedline and a circular-shaped microstrip patch. This antenna is analyzed and optimized by using the finite difference time domain (FDTD) method. The impedance bandwidth of optimized antenna is 1.94 octave that is much broader than the conventional microstrip slot antennas.

  • PDF

Improved Coplanar Waveguide-to-Microstrip Right-Angled Transition using an Offset Microstrip Section (Offset Microstrip을 이용한 Coplanar Waveguide-to-Microstrip Right-Angled 전이의 특성 개선)

  • 이맹열;이해영
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.5
    • /
    • pp.445-450
    • /
    • 2002
  • We analyzed and measured a CPW(coplanar waveguide)-to-microstrip right-angled transition. Asymmetric CPW-to-microstrip transitions show significant resonances by the slot mode generation at the discontinuities. The air-bridge just shifting the resonance frequency can not fundamentally suppress the occurrence of the slot mode. So, we proposed the structure using offset microstrip section to eliminate the resonance. The proposed structure may be useful for the application of multi-layed structure.