Acknowledgement
본 연구는 화랑대연구소 지원을 받아 수행되었습니다.
References
- W. E. Bachmann and J. C. Sheehan, A new method of preparing the high explosive RDX, J. Am. Chem. Soc., 71, 1842-1845 (1949). https://doi.org/10.1021/ja01173a092
- Z. Matys D. Powala, A. Orzechowski, and A. Maranda, Methods for obtaining octogen (HMX), CHEMIK, 66, 58-63 (2012).
- S. H, Kim, Effect of particle size on thermal property of RDX and HMX, Appl. Chem. Eng., 23, 352-357 (2012).
- V. K. Balakrishnan, F. Monteil-Rivera, M. A. Gautier, and J. Hawari, Sorption and stability of the polycyclic nitramine explosive CL-20 in soil, J. Environ. Qual., 33, 1362-1368 (2004). https://doi.org/10.2134/jeq2004.1362
- R. E. Card, Jr. and R. Autenrieth, Treatment of HMX and RDX contamination, 9-10, ANRCP-1998-2, Amarillo National Resource Center for Plutonium, Amarillo, Texas (1998).
- D. Kalderis, A. L. Juhasz, R. Boopathy, and S. Comfort, Soils contaminated with explosives: Environmental fate and evaluation of state-of the-art remediation processes, Pure Appl. Chem., 83, 1407-1484 (2011). https://doi.org/10.1351/pac-rep-10-01-05
- T. Urbanski, Chemistry and Technology of Explosives, Vol. 3, 77-78, Pergamon Press, Oxford (1967).
- R. M. X. Hesselmann and M. K. Stenstrom, Treatment concept for RDX-containing waste waters using activated carbon with offline solvent biological regeneration, School of Engineering and Applied Science Report Eng. 94-23, 2-5, University of California, Los Angeles (1994).
- E. S. Fiala, Investigations into the metabolism and mode of action of the colon carcinogens 1,2-dimethylhydrazine and azoxymethane, Cancer, 40, 2436-2445 (1977). https://doi.org/10.1002/1097-0142(197711)40:5+<2436::AID-CNCR2820400908>3.0.CO;2-U
- W. L. McLellan, W. R. Hartley, and M. E. Brower, Health advisory for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), PB90-273533, US Army Medical Research and Development Command, Fort Detrick, Maryland (1988).
- W. L. McLellan, W. R. Hartley, and M. E. Brower, Health advisory for octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), PB90-273525, US Army Medical Research and Development Command, Fort Detrick, Maryland (1988).
- E. Etnier, Water quality criteria for hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX), Regul. Toxicol. Pharmacol., 9, 147-157 (1989). https://doi.org/10.1016/0273-2300(89)90032-9
- E. L. Etnier and W. R. Hartley, Comparison of water quality criterion and lifetime health advisory for hexahydro-1,3,5-trinitro-1,3,5- triazine(RDX), Regul. Toxicol. Pharmacol., 11, 118-122 (1990). https://doi.org/10.1016/0273-2300(90)90015-4
- J. Aalto, Management of the groundwater contaminated by military explosives, Master of Science Thesis, Tampere University of Technology, Tampere, Finland (2016).
- P. Mahbub and P. N. Nesterenko, Application of photo degradation for remediation of cyclic nitramine and nitroaromatic explosives, RSC Adv., 6, 77603 (2016). https://doi.org/10.1039/C6RA12565D
- V. K. Balakrishnan, A. Halasz, and J. Hawari, Alkaline hydrolysis of the cyclic nitramine explosives RDX, HMX, and CL-20: New insights into degradation pathways obtained by the observation of novel intermediates, Environ. Sci. Technol., 37, 1838-1843 (2003). https://doi.org/10.1021/es020959h
- H. M. Heilmann, U. Wiesmann, and M. K. Stenstrom, Kinetics of the alkaline hydrolysis of high explosives RDX and HMX in aqueous solution and adsorbed to activated carbon, Environ. Sci. Technol., 30, 1485-1492 (1996). https://doi.org/10.1021/es9504101
- M. Vidali, Bioremediation. An overview, Pure Appl. Chem., 73, 1163-1172 (2001). https://doi.org/10.1351/pac200173071163
- A. Bernstein and Z. Ronen, Biodegradation of the Explosives TNT, RDX and HMX. In: S. Singh, eds. Microbial Degradation of Xenobiotics, 135-176, Environmental Science and Engineering, Springer, Berlin, Heidelberg (2012).
- N. G. McCormick, J. H. Cornell, and H. S. Kaplan, Biodegradation of hexadro-1,3,5-trinitro-1,3,5-triazine, Appl. Environ. Microbiol., 42, 817-823 (1981). https://doi.org/10.1128/aem.42.5.817-823.1981
- J. Hawari, A. Halasz, T. Sheremata, S. Beaudet, C. Groom, L. Paquet, C. Rhofir, G. Ampleman, and S. Thiboutot, Characterization of metabolites during biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) with municipal anaerobic sludge. Appl. Environ. Microbiol., 66, 2652-2657 (2000). https://doi.org/10.1128/AEM.66.6.2652-2657.2000
- J. Hawari, A. Halasz, C. Groom, S. Deschamps, L. Paquet, C. Beaulieu, and A. Corriveau, Photodegradation of RDX in aqueous solution: a mechanistic probe for biodegradation with Rhodococcus sp., Environ. Sci. Technol., 36, 5117-5123 (2002). https://doi.org/10.1021/es0207753
- J. Hawari, A. Halasz, S. Beaudet, L. Paquet, G. Ampleman, and S. Thiboutot, Biotransformation routes of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine by municipal anaerobic sludge, Environ. Sci. Technol., 35, 70-75 (2001). https://doi.org/10.1021/es0013531
- D. Fournier, A. Halasz, J. Spain, P. Fiurasek, and J. Hawari, Determination of key metabolites during biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine with Rhodococcus sp. strain DN22, Appl. Environ. Microbiol., 68, 166-172 (2002). https://doi.org/10.1128/AEM.68.1.166-172.2002
- R. G. Jackson, E. L. Rylott, D. Fournier, J. Hawari, and N. C. Bruce, Exploring the biochemical properties and remediation applications of the unusual explosive-degrading P450 system XplA/B, Proc. Natl. Acad. Sci., 104, 16822-16827 (2007). https://doi.org/10.1073/pnas.0705110104
- A. Halasz, D. Manno, S. E. Strand, N. C. Bruce, and J. Hawari, Biodegradation of RDX and MNX with Rhodococcus sp. strain DN22: New insights into the degradation pathway, Environ. Sci. Technol., 44, 9330-9336 (2010). https://doi.org/10.1021/es1023724
- M. E. Fuller, N. Perreault, and J. Hawari, Microaerophilic degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by three Rhodococcus strains. Lett. Appl. Microbiol., 51, 313-318 (2010). https://doi.org/10.1111/j.1472-765X.2010.02897.x
- K. Ayoub, E. D. van Hullebusch, M. Cassir, and A. Bermond, Application of advanced oxidation processes for TNT removal: A review, J. Hazard. Mater., 178, 10-28 (2010). https://doi.org/10.1016/j.jhazmat.2010.02.042
- M. C. Lapointe, R. Martel, and D. P. Cassidy, RDX degradation by chemical oxidation using calcium peroxide in bench scale sludge systems, Environ. Res., 188, 109836 (2020). https://doi.org/10.1016/j.envres.2020.109836
- M. J. Liou., M. C. Lu, and J. N. Chen, Oxidation of explosives by Fenton and photo-Fenton processes, Water Res., 37, 3172-3179 (2003). https://doi.org/10.1016/S0043-1354(03)00158-1
- K. B. Gregory, P. Larese-Casanova, G. F. Parkin, and M. M. Scherer, Abiotic transformation of hexahydro-1,3,5-trinitro-1,3,5-triazine by FeII bound to magnetite, Environ. Sci. Technol., 38, 1408-1414 (2004). https://doi.org/10.1021/es034588w
- F. Monteil-Rivera, L. Paquet, A. Halasz, M. T. Montgomery, and J. Hawari, Reduction of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine by zerovalent iron: product distribution, Environ. Sci. Technol., 39, 9725-9731 (2005). https://doi.org/10.1021/es051315n
- M. Muniz-Miranda, A. Zoppi, F. Muniz-Miranda, and N. Calisi, Palladium oxide nanoparticles: preparation, characterization and catalytic activity evaluation, Coatings, 10, 207 (2020). https://doi.org/10.3390/coatings10030207
- H. H. Lee, D. H. Jang, and S. C. Hong, A study on the simultaneous oxidation of CH4 and CO over Pd/TiO2 catalyst, Appl. Chem. Eng., 23, 253-258 (2012).
- S. H. Moon, W. J. Lee, and K. Y. Lee, Research trends in chemical analysis based explosive detection techniques, Appl. Chem. Eng., 33, 1-10 (2022).
- B. Didillon, E. Merlen, T. Pages, and D. Uzio, From colloidal particles to supported catalysts: a comprehensive study of palladium oxide hydrosols deposited on alumina, Stud. Surf. Sci. Catal., 118, 41-54 (1998). https://doi.org/10.1016/S0167-2991(98)80166-3
- S. Brunauer, P. H. Emmett, and E. Teller, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 60, 309-319 (1938). https://doi.org/10.1021/ja01269a023
- T. L. Hwang and A. J. Shaka, Water suppression using excitation sculpting with gradients, J. Magn. Reson.; Series A, 112, 275-279 (1995). https://doi.org/10.1006/jmra.1995.1047
- G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, and K. I. Goldberg, NMR chemical shifts of trace impurities: common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist, Organometallics, 29, 2176-2179 (2010). https://doi.org/10.1021/om100106e
- M. Szala and L. Szymanczyk, Analysis of common explosives in different solvents by nuclear magnetic resonance spectroscopy, Cent. Eur. J. Energ. Mater., 11, 129-142 (2014).
- A. Preiss, K. Levsen, E. Humpfer, and M. Spraul, Application of high-field proton nuclear magnetic resonance (1H-NMR) spectroscopy for the analysis of explosives and related compounds in groundwater samples-a comparison with the high-performance liquid chromatography (HPLC) method, Fresenius J. Anal. Chem., 356, 445-451 (1996). https://doi.org/10.1007/s0021663560445
- M. Godejohann, L. Heintz, C. Daolio, J. Berset, and D. Muff, Comprehensive non-targeted analysis of contaminated groundwater of a former ammunition destruction site using 1H-NMR and HPLC-SPE-NMR/TOF-MS, Environ. Sci. Technol., 43, 7055-7061 (2009). https://doi.org/10.1021/es901068d
- I. Berregi, G. del Campo, R. Caracena, and J. I. Miranda, Quantitative determination of formic acid in apple juices by 1H NMR spectrometry, Talanta, 72, 1049-1053 (2007). https://doi.org/10.1016/j.talanta.2006.12.031