DOI QR코드

DOI QR Code

PP 분말/CNF 1 wt% 슬러리 복합체의 CNF 분산 및 물성에 대한 개질 PP의 영향

Effect of Modification PP on the Physical Properties and CNF Dispersion of PP Powder/CNF 1 wt% Slurry Composite

  • 김준석 (한국자동차연구원 강소특구연구단) ;
  • 김연철 (공주대학교 신소재공학부 고분자공학전공)
  • Kim, Jun Seok (Korea Automotive Technology Institute) ;
  • Kim, Youn Cheol (Major in Polymer Science and Engineering, Kongju National University)
  • 투고 : 2022.05.10
  • 심사 : 2022.05.20
  • 발행 : 2022.06.10

초록

폴리프로필렌(PP) 분말과 셀룰로오스 나노섬유(CNF) 1 wt% 슬러리 현탁액을 감압여과 및 오븐 건조한 후 이축압출기를 이용하여 PP 분말/CNF 1 wt% 슬러리 복합체를 제조하였다. PP는 곁가지 및 극성기가 도입된 개질 PP를 사용하였다. 곁가지는 디비닐벤젠을 이용하여 도입하였고 극성기는 말레인산무수물(MAH)을 이용하여 개질하였다. CNF의 분산성 및 복합체의 물성을 검토한 결과 PP 분말/CNF 1 wt% 슬러리로부터 제조한 복합체의 경우 CNF 분말로부터 제조한 복합체와 비교 시 인장강도 및 굴곡강도에서는 동등 이상 수준을 나타내는 것을 확인하였다.

Polypropylene (PP) powder/cellulose nanofibers (CNF) 1 wt% slurry composites were prepared by filtering their suspension under reduced pressure and dried them in an oven followed by the use of a twin screw extruder. PP modified with side branches and polar groups was used. The side branches and polar groups were introduced into PP by using divinylbenzene and maleic anhydride (MAH), respectively. As a result of examining the dispersibility of CNF and the physical properties of the composite, it was confirmed that the composite prepared from PP powder/CNF 1 wt% slurry showed equal or higher levels in tensile and flexural strength as compared with those using the composite prepared from CNF powder.

키워드

과제정보

이 논문은 환경부의 폐자원에너지화 전문인력 양성사업으로 지원되었습니다.

참고문헌

  1. C. Eyholzer. Dried nanofibrillated cellulose and its bionanocomposites, Ph.D. Dissertation, Lulea University of Technology, Sweden, (2011).
  2. F. W. Herrick, R. L. Casebier, J. K. Hamilton, and K. R. Sandberg, Microfibrillated cellulose: morphology and accessibility. J. Appl. Polym. Sci.: Appl. Polym. Symp, 37, NY, USA, May 24 (1982).
  3. G. H. D. Tonoli, E. M. Teixeira, A. C. Correa, J. M. Marconcini, L. A. Caixeta, M. A. Pereira-da-Silva, and L. H. C. Mattoso, Cellulose micro/nanofibres from Eucalyptus kraft pulp: preparation and properties, Carbohydr. Polym., 89, 80-88 (2012). https://doi.org/10.1016/j.carbpol.2012.02.052
  4. Q. Chen, R. P. Garcia, J. Munoz, U. Perez de Larraya, N. Garmendia, Q. Yao, and A. R. Boccaccini, Cellulose nanocrystals bioactive glass hybrid coating as bone substitutes by electrophoretic co-deposition: In situ control of mineralization of bioactive glass and enhancement of osteoblastic performance, ACS Appl. Mater. Interfaces, 7, 24715-24725 (2015). https://doi.org/10.1021/acsami.5b07294
  5. B. Y. Kim, J. Moon, M. J. Yoo, S. Kim, J. Kim, and H. Yang, Surface-modified cellulose nanofibril surfactants for stabilizing oil-in-water emulsions and producing polymeric particles, Appl. Chem. Eng., 32, 110-116 (2021). https://doi.org/10.14478/ACE.2020.1109
  6. S. W. Kim and B. T. Yoon, Effect of nanocellulose on the mechanical and self-shrinkage properties of cement composites, Appl. Chem. Eng., 27, 380-385 (2016). https://doi.org/10.14478/ACE.2016.1039
  7. I. H. Hwang, S. Y. Choi, S. H. Lee, Y. H. Lee, S. M. Lee, S. C. Kim, and S. S. Kim, Electrospinning method-based CNF properties analysis and its application to electrode in electrolysis process, Appl. Chem. Eng., 28, 257-262 (2017). https://doi.org/10.14478/ACE.2017.1012
  8. M. A. Usmani, I. Khan, U. Gazal, M. K. Mohamad Haafiz, and A. H. Bhat, Interplay of polymer bionanocomposites and significance of ionic liquids for heavy metal removal, Compos. Sci. Eng., 441-463 (2018).
  9. H. J. Yoon, B. M. Gil, J. H. Lee, J. E. Park, J. Lim, M. J. Jo, K. Jung, and J. J. Wie, Thermal and mechanical properties of polypropylene/cellulose nanofiber composites, Polymer (Korea), 44, 255-263 (2020). https://doi.org/10.7317/pk.2020.44.3.255
  10. J. C. Lee, J. A. Lee, D. Y. Lim, and K. Y. Kim, Fabrication of cellulose nanofiber reinforced thermoplastic composites, Fibers Polym., 19, 1753-1759 (2018). https://doi.org/10.1007/s12221-018-8279-8
  11. A. Iwatake, M. Nogi, and H. Yano, (2008), Cellulose nanofiber-reinforced polylactic acid, Compos. Sci. Technol., 68, 2103-2106 (2008). https://doi.org/10.1016/j.compscitech.2008.03.006
  12. T. Wang and L. T. Drzal, Cellulose-nanofiber-reinforced poly (lactic acid) composites prepared by a water-based approach, ACS Appl. Mater. Interfaces, 4, 5079-5085 (2012). https://doi.org/10.1021/am301438g
  13. A. Bhatnagar and M. Sain, Processing of cellulose nanofiberreinforced composites, J. Reinf. Plast. Compos., 24, 1259-1268 (2005). https://doi.org/10.1177/0731684405049864
  14. K. Yuwawech, J. Wootthikanokkhan, and S. Tanpicha, Effects of two different cellulose nanofiber types on properties of poly(vinyl alcohol) composite films, J. Nanomater., 1, 1-10 (2015).
  15. H. Yano, H. Omura, Y. Honma, H. Okumura, H. Sano, and F. Nakatsubo, Designing cellulose nanofiber surface for high density polyethylene reinforcement, Cellulose, 25, 3351-3362 (2018). https://doi.org/10.1007/s10570-018-1787-2
  16. H. M. Yadav, J. D. Park, H. C. Kang, J. Kim, and J. J. Lee, Cellulose nanofiber composite with bimetallic zeolite imidazole framework for electrochemical supercapacitors, Nanomaterials, 11, 395-401 (2021). https://doi.org/10.3390/nano11020395
  17. J. S. Kim and Y. C. Kim, Effect of polypropylene branching and maleic anhydride graft on CNF dispersity of polypropylene (PP)/cellulose nanofiber (CNF) composite, Polymer (Korea), 44, 861-867 (2020). https://doi.org/10.7317/pk.2020.44.6.861
  18. F. H. Su and H. X. Huang, Influence of polyfunctional monomer on melt strength and rheology of long-chain branched polypropylene by reactive extrusion, J. Appl. Polym. Sci., 116, 2557-2565 (2010). https://doi.org/10.1002/app.31738
  19. L. Cui, Z. Zhou, Y. Zhang, X. Zhang, and W. Zhou, Rheological behavior of polypropylene/novolac blends, J. Appl. Polym. Sci., 106, 811-816 (2007). https://doi.org/10.1002/app.26515
  20. C. R. Herrero and J. L. Acosta, Effect of poly(epichlorhydrin) on the crystallization and compatibility behavior of poly(ethylene oxide)/polyphosphazene blends, Polym. J., 26, 786-796 (1994). https://doi.org/10.1295/polymj.26.786