DOI QR코드

DOI QR Code

멀티 리간드의 특이적 상호작용이 입자-세포간 상호작용에 미치는 영향

Effect of Specific Interaction of Multi-Ligands on the Specific Interaction between Particle and Cell

  • 윤정현 (연세대학교 미래캠퍼스 의공학부) ;
  • 이세영 (연세대학교 미래캠퍼스 의공학부)
  • Yoon, Jung Hyun (Division of Biomedical Engineering, Yonsei University) ;
  • Lee, Sei Young (Division of Biomedical Engineering, Yonsei University)
  • 투고 : 2021.12.02
  • 심사 : 2022.03.10
  • 발행 : 2022.04.30

초록

Recent advancement of micro/nano technology enables the development of diverse micro/nano particle-based delivery systems. Due to the multi-functionality and engineerability, particle-based delivery system are expected to be a promising method for delivery to the target cell. Since the particle-based delivery system should be delivered to the various kinds of target cell, including the cardiovascular system, cancer cell etc., it is frequently decorated with multiple kinds of targeting molecule(s) to induce specific interaction to the target cell. The surface decorated molecules interact with the cell surface expressed molecule(s) to specifically form a firm adhesion. Thus, in this study, the probability of adhesion is estimated to predict the possibility to form a firm adhesion for the multi-ligand decorated particle-based delivery system.

키워드

과제정보

이 논문은 2021년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받은 4단계 BK21 사업(Education and Research Center of NBIT-integrated Medical System for Personalized Healthcare-II21SS7606007)의 지원을 받아 수행됨

참고문헌

  1. Ferrari M. Cancer nanotechnology: opportunities and challenges. Nature reviews cancer. 2005;5(3):161-71. https://doi.org/10.1038/nrc1566
  2. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nature nanotechnology. 2007;2(12):751-60. https://doi.org/10.1038/nnano.2007.387
  3. Paulis LE, Jacobs I, van den Akker NM, Geelen T, Molin DG, Starmans LW, et al. Targeting of ICAM-1 on vascular endothelium under static and shear stress conditions using a liposomal Gd-based MRI contrast agent. Journal of nanobiotechnology. 2012;10(1):1-12. https://doi.org/10.1186/1477-3155-10-1
  4. Tasciotti E, Liu X, Bhavane R, Plant K, Leonard AD, Price BK, et al. Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nature nanotechnology. 2008;3(3):151-7. https://doi.org/10.1038/nnano.2008.34
  5. Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R. Biodegradable long-circulating polymeric nanospheres. Science. 1994;263(5153):1600-3. https://doi.org/10.1126/science.8128245
  6. Lee S-Y, Ferrari M, Decuzzi P. Design of bio-mimetic particles with enhanced vascular interaction. Journal of biomechanics. 2009;42(12):1885-90. https://doi.org/10.1016/j.jbiomech.2009.05.012
  7. Lee S-Y, Ferrari M, Decuzzi P. Shaping nano-/micro-particles for enhanced vascular interaction in laminar flows. Nanotechnology. 2009;20(49):495101. https://doi.org/10.1088/0957-4484/20/49/495101
  8. Lee T-R, Choi M, Kopacz AM, Yun S-H, Liu WK, Decuzzi P. On the near-wall accumulation of injectable particles in the microcirculation: smaller is not better. Scientific reports. 2013;3(1):1-8.
  9. Farokhzad OC, Jon S, Khademhosseini A, Tran T-NT, LaVan DA, Langer R. Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer research. 2004;64(21):7668-72. https://doi.org/10.1158/0008-5472.CAN-04-2550
  10. Eniola AO, Krasik EF, Smith LA, Song G, Hammer DA. Idomain of lymphocyte function-associated antigen-1 mediates rolling of polystyrene particles on ICAM-1 under flow. Biophysical journal. 2005;89(5):3577-88. https://doi.org/10.1529/biophysj.104.057729
  11. Eniola AO, Rodgers SD, Hammer DA. Characterization of biodegradable drug delivery vehicles with the adhesive properties of leukocytes. Biomaterials. 2002;23(10):2167-77. https://doi.org/10.1016/S0142-9612(01)00349-0
  12. Kolhar P, Anselmo AC, Gupta V, Pant K, Prabhakarpandian B, Ruoslahti E, et al. Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proceedings of the National Academy of Sciences. 2013;110(26):10753-8. https://doi.org/10.1073/pnas.1308345110
  13. Lim EK, Huh YM, Yang J, Lee K, Suh JS, Haam S. pH-triggered drug-releasing magnetic nanoparticles for cancer therapy guided by molecular imaging by MRI. Advanced Materials. 2011;23(21):2436-42. https://doi.org/10.1002/adma.201100351
  14. Farokhzad OC, Khademhosseini A, Jon S, Hermmann A, Cheng J, Chin C, et al. Microfluidic system for studying the interaction of nanoparticles and microparticles with cells. Analytical chemistry. 2005;77(17):5453-9. https://doi.org/10.1021/ac050312q
  15. Eniola AO, Willcox PJ, Hammer DA. Interplay between rolling and firm adhesion elucidated with a cell-free system engineered with two distinct receptor-ligand pairs. Biophysical journal. 2003;85(4):2720-31. https://doi.org/10.1016/S0006-3495(03)74695-5
  16. Ferrante E, Pickard J, Rychak J, Klibanov A, Ley K. Dual targeting improves microbubble contrast agent adhesion to VCAM-1 and P-selectin under flow. Journal of controlled release. 2009;140(2):100-7. https://doi.org/10.1016/j.jconrel.2009.08.001
  17. Lamberti G, Tang Y, Prabhakarpandian B, Wang Y, Pant K, Kiani MF, et al. Adhesive interaction of functionalized particles and endothelium in idealized microvascular networks. Microvascular research. 2013;89:107-14. https://doi.org/10.1016/j.mvr.2013.03.007
  18. Weller GE, Villanueva FS, Tom EM, Wagner WR. Targeted ultrasound contrast agents: In vitro assessment of endothelial dysfunction and multi-targeting to ICAM-1 and sialyl Lewisx. Biotechnology and bioengineering. 2005;92(6):780-8. https://doi.org/10.1002/bit.20625
  19. Yoon JH, Kim DK, Na M, Lee SY. Multi-ligand functionalized particle design for cell targeting and drug delivery. Biophysical chemistry. 2016;213:25-31. https://doi.org/10.1016/j.bpc.2016.03.006
  20. Decuzzi P, Godin B, Tanaka T, Lee S-Y, Chiappini C, Liu X, et al. Size and shape effects in the biodistribution of intravascularly injected particles. Journal of Controlled Release. 2010;141(3):320-7. https://doi.org/10.1016/j.jconrel.2009.10.014
  21. Champion JA, Walker A, Mitragotri S. Role of particle size in phagocytosis of polymeric microspheres. Pharmaceutical research. 2008;25(8):1815-21. https://doi.org/10.1007/s11095-008-9562-y
  22. Decuzzi P, Ferrari M. The adhesive strength of non-spherical particles mediated by specific interactions. Biomaterials. 2006;27(30):5307-14. https://doi.org/10.1016/j.biomaterials.2006.05.024
  23. Cozens-Roberts C, Lauffenburger DA, Quinn JA. Receptor-mediated cell attachment and detachment kinetics. I. Probabilistic model and analysis. Biophysical journal. 1990;58(4):841-56. https://doi.org/10.1016/S0006-3495(90)82430-9
  24. Zhu C, Williams TE. Modeling concurrent binding of multiple molecular species in cell adhesion. Biophysical journal. 2000;79(4):1850-7. https://doi.org/10.1016/S0006-3495(00)76434-4
  25. Cozens-Roberts C, Quinn JA, Lauffenburger DA. Receptor-mediated cell attachment and detachment kinetics. II. Experimental model studies with the radial-flow detachment assay. Biophysical journal. 1990;58(4):857-72. https://doi.org/10.1016/S0006-3495(90)82431-0
  26. Decuzzi P, Ferrari M. Design maps for nanoparticles targeting the diseased microvasculature. Biomaterials. 2008;29(3):377-84. https://doi.org/10.1016/j.biomaterials.2007.09.025
  27. Goldman A, Cox RG, Brenner H. Slow viscous motion of a sphere parallel to a plane wall-II Couette flow. Chemical engineering science. 1967;22(4):653-60. https://doi.org/10.1016/0009-2509(67)80048-4
  28. Piper JW, Swerlick RA, Zhu C. Determining force dependence of two-dimensional receptor-ligand binding affinity by centrifugation. Biophysical journal. 1998;74(1):492-513. https://doi.org/10.1016/S0006-3495(98)77807-5
  29. Decuzzi P, Ferrari M. The role of specific and non-specific interactions in receptor-mediated endocytosis of nanoparticles. Biomaterials. 2007;28(18):2915-22. https://doi.org/10.1016/j.biomaterials.2007.02.013