DOI QR코드

DOI QR Code

Priority Analysis of Climate Smart Agriculture (CSA) Technology using Analytic Hierarchy Process (AHP)

계층화 분석기법(AHP)을 이용한 기후스마트농업(CSA) 기술의 우선순위 분석

  • HyunJi Lee (Department of Agricultural Economics and Rural Development, Seoul National University) ;
  • KyungJae Lee (Department of Agricultural Economics and Rural Development, Seoul National University) ;
  • Sung Eun Sally Oh (Department of Agricultural Economics and Rural Development, Seoul National University) ;
  • Yun Yeong Choi (Department of Agricultural Economics and Rural Development, Seoul National University) ;
  • Brian H.S. Kim (Department of Agricultural Economics and Rural Development, Seoul National University)
  • 이현지 (서울대학교 농경제사회학부) ;
  • 이경재 (서울대학교 농경제사회학부 ) ;
  • 오승은 (서울대학교 농경제사회학부) ;
  • 최윤영 (서울대학교 농경제사회학부 ) ;
  • 김홍석 (서울대학교 농경제사회학부 )
  • Received : 2022.10.18
  • Accepted : 2022.11.29
  • Published : 2022.11.30

Abstract

In responding to climate change in the agricultural sector, Climate Smart Agriculture (CSA) is an approach to establish a sustainable agricultural system through comprehensive management of technology, policy, and investment. The international community is continually expanding CSA implementation, and it became more important to understand the status of the domestic agriculture system and practices that are relevant to CSA. This study explored the available CSA in domestic agricultural systems and presented the order of relative importance of CSA technology. AHP analysis is employed for the evaluation with the following criteria: productivity, marketability, adaptability, and mitigation. The relative importance is evaluated with six agricultural technologies (soil, crop management, water, energy efficiency, alternative energy, and precision agriculture) in 28 agricultural technology sectors. The results of the AHP analysis showed that 'alternative energy' was found to be a top priority among the agricultural technology sectors, and 'shallow depth drain in rice paddy' was a top priority for agricultural technology. Also, the 'marketability' in soil and water sectors, 'mitigation' in crop management, and 'adaptability' in energy efficiency and alternative energy were given higher priority. The results of this study can be used as a good source for strategic CSA preparation and application.

Keywords

Acknowledgement

본 연구 논문은 농촌진흥청 연구사업(과제번호: PJ014824)의 지원에 의해 이루어진 것입니다. 아울러 이 연구를 위해 AHP 설문조사 및 자문에 도움을 주신 농업기술 분야의 전문가분들께 감사를 드립니다.

References

  1. 금동혁. (2012). 왕겨에너지를 이용한 RPC용 신건조시스템 및 전력 생산 플랜트 개발. 농촌진흥청. 서울: 성균관대학교.. 
  2. 김나윤, & 박창석. (2021). 재난재해 부문 기후변화 적응대책 우선순위 분석: AHP 와 ANP 방법론을 이용하여. 환경정책, 29(1), 21-45. 
  3. 김준, & 심교문. (2021). 한국 김제의 벼 경작 시스템의 기후스마트농업 (Climate-Smart Agriculture) 기반의 평가. 한국농림기상학회지, 23(4), 235-250.  https://doi.org/10.5532/KJAFM.2021.23.4.235
  4. 김창길, & 문동현. (2013). 농업.농촌 녹색성장 정책수단의 우선순위 결정. 농촌경제, 35(5), 45-64.  https://doi.org/10.36464/JRD.2012.35.5.003
  5. 김창길, & 임정빈. (2021). [탄소중립 시리즈 (3)] 농업.농촌의 온실가스, 배출 감축과 흡수 증대. 시선집중 GSnJ, (293), 1-19. 
  6. 김형권, 전종길, 백이, 표희영, 정재완, & 김용철. (2015). 순환식 수막하우스의 수온에 따른 플라스틱 온실 내 온도변화 분석. 시설원예.식물공장, 24(2), 93-99. 
  7. 박우균, 김건엽, 이선일, & 이상호. (2015). 농업부문 온실가스 감축기술 우선순위 평가를 위한 다중속성 분석. 농업경영. 정책연구, 42(3), 616-629. 
  8. 손민희, 이슬비, 이균식, & 김태영. (2019). 농업환경보전 실천기술 우선순위 분석을 통한 맞춤형 실천기술 패키지 제안 연구. 농업생명과학연구, 53(5), 153-165. 
  9. 신용광, 김창길, & 김태영. (2005). 계층분석과정 (AHP)을 이용한 친환경농업정책 프로그램의 우선순위 결정. 농촌경제, 28(2), 39-56. 
  10. 유승환, & 이상현. (2016). 기후스마트 농업 및 WEF Nexus 를 고려한 농촌용수 및 자원관리. 한국농공학회지, 58(3), 27-32. 
  11. 이상현 & 유승환. (2016). 기후스마트 농업 및 WEF Nexus 를 고려한 농촌용수 및 자원관리. 한국농공학회, 58(3), 27-32. 
  12. 이종식, 최은정(2017) 농업부문 기후변화 대응을 위한 주요 국제기구 동향。세계농업 111-135. 
  13. 임영아. (2018). 기후스마트농업과 넥서스적 접근의 필요성. 전원과 자원, 60(3), 4-8. 
  14. 임은선. (2006). 계층분석과정 (AHP)-선택의 기로에서 합리적으로 판단하기. 국토, 128-135. 
  15. 정학균, 임영아, 이혜진, & 김창길. (2016). 기후 스마트 농업의 실태 진단과 과제. 한국농촌경제연구원. 
  16. Akanoa, O., Modirwaa, S., Yusufb, A., & Oladelec, O. (2018, July). Making smallholder farming systems in Nigeria sustainable and climate smart. In 13th European IFSA symposium held in Chania, Greece. 
  17. Batchelor, S., & Schnetzer, J. (2018). Compendium on climate-smart irrigation: concepts, evidence and options for a climate-smart approach to improving the performance of irrigated cropping system. Compendium on climate-smart irrigation: concepts, evidence and options for a climate-smart approach to improving the performance of irrigated cropping system. 
  18. Brandt, P., Kvakic, M., Butterbach-Bahl, K., & Rufino, M. C. (2017). How to target climate-smart agriculture? Concept and application of the consensus-driven decision support framework "targetCSA". Agricultural Systems, 151, 234-245.  https://doi.org/10.1016/j.agsy.2015.12.011
  19. Chandra, A., McNamara, K. E., & Dargusch, P. (2018). Climate-smart agriculture: perspectives and framings. Climate Policy, 18(4), 526-541.  https://doi.org/10.1080/14693062.2017.1316968
  20. FAO. (2013). Climate-Smart Agriculture: Sourcebook, p.ix 
  21. FAO. (2017). Climate-Smart Agriculture: Sourcebook. Second Edition. Retrieved from http://www.fao.org/climate-smart-agriculture-sourcebook/enabling-frameworks/en/ 
  22. FAO. (2019a). Climate-smart agriculture and the Sustainable Development Goals. Retrieved from http://www.fao.org/3/ca6043en/CA6043EN.pdf. 
  23. FAO. (2019b). Operational guidelines for the design, implementation and harmonization of monitoring and evaluation systems for climate-smart agriculture. Rome, FAO. 
  24. Khatri-Chhetri, A., Aggarwal, P. K., Joshi, P. K., & Vyas, S. (2017). Farmers' prioritization of climate-smart agriculture (CSA) technologies.Agricultural systems, 151, 184-191.  https://doi.org/10.1016/j.agsy.2016.10.005
  25. Lewis, J., & Rudnick, J. (2019). The policy enabling environment for climate smart agriculture: A case study of California. Frontiers in Sustainable Food Systems, 3, 31. 
  26. Musumba, M., Grabowski, P., Palm, C. and Snapp, S. (2017). Guide for the Sustainable Intensification Assessment Framework. Feed the Future, USAID, Kansas State University. https://www.k-state.edu/siil/documents/docs_siframework/Guide%20for%20SI%20Assessment%20Framework%20-%2010.24.17 
  27. Negra, C., Vermeulen, S., Barioni, L. G., Mamo, T., Melville, P., & Tadesse, M. (2014). Brazil, Ethiopia, and New Zealand lead the way on climate-smart agriculture. Agriculture & Food Security, 3(1), 1-6.  https://doi.org/10.1186/2048-7010-3-1
  28. Radeny M, Ogada MJ, Recha J, Kimeli P, Rao EJO, Solomon D. 2018. Uptake and Impact of Climate-Smart Agriculture Technologies and Innovations in East Africa. CCAFS Working Paper no. 251. Wageningen, Netherlands: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). Retrieved from www.ccafs.cgiar.org. 
  29. Saaty, T. L. (1990). How to make a decision: the analytic hierarchy process. European journal of operational research, 48(1), 9-26.  https://doi.org/10.1016/0377-2217(90)90057-I
  30. Saaty, T. L. 1980. The analytic hierarchy process: Planning, Priority Setting, Resource Allocation. Pittsburgh, PA: University of Pittsburgh Publishing. 
  31. Sova, C. A., Grosjean, G., Baedeker, T., Nguyen, T. N., Wallner, M., Nowak, A., ... & Lizarazo, M. (2018). Bringing the Concept of Climate-Smart Agriculture to Life. 
  32. UNFCCC SBSTA. (2019a). Koronivia joint work on agriculture: Draft conclusions proposed by the Chairs. Retrieved from https://unfccc.int/process-and-meetings/conferences/bonn-climate-change-conference-june-2019/sessions/sbsta-50. 
  33. UNFCCC SBSTA. (2019b). Koronivia joint work on agriculture: Draft conclusions proposed by the Chairs. Retrieved from https://unfccc.int/event/sbsta-51. 
  34. UNFCCC. (2019). Climate action and support trends. Retrieved from https://unfccc.int/sites/default/files/resource/Climate_Action_Support_Trends_2019.pdf. 
  35. World Bank (2018). Maharashtra Project for Climate Resilient Agriculture. Retrieved from https://documents.worldbank.org/en/publication/documents-reports/documentdetail/704731519959668277/india-maharashtra-project-on-climate-resilient-agriculture-project 
  36. Zougmore, R., Partey, S., Ouedraogo, M., Omitoyin, B., Thomas, T., Ayantunde, A., ... & Jalloh, A. (2016). Toward climate-smart agriculture in West Africa: a review of climate change impacts, adaptation strategies and policy developments for the livestock, fishery and crop production sectors. Agriculture & Food Security, 5(1), 1-16. https://doi.org/10.1186/s40066-015-0049-x