DOI QR코드

DOI QR Code

역 원근변환 기법을 이용한 터널 영상유고시스템의 원거리 감지 성능 향상에 관한 연구

A study for improvement of far-distance performance of a tunnel accident detection system by using an inverse perspective transformation

  • 이규범 (한국건설기술연구원 미래스마트건설연구본부, 과학기술연합대학원대학교(UST) 스마트도시건설융합) ;
  • 신휴성 (한국건설기술연구원 미래스마트건설연구본부)
  • Lee, Kyu Beom (Dept. of Future & Smart Construction Research, Korea Institute of Civil Engineering and Building Technology, Smart City and Construction Convergence, University of Science & Technology) ;
  • Shin, Hyu-Soung (Dept. of Future & Smart Construction Research, Korea Institute of Civil Engineering and Building Technology)
  • 투고 : 2022.03.10
  • 심사 : 2022.05.18
  • 발행 : 2022.05.31

초록

국내 200 m 이상 연장의 터널에서는 CCTV 설치가 의무화되어 있으며, 터널 내 돌발 상황을 자동으로 인지한 다음 터널 관리자에게 알릴 수 있는 터널 영상유고시스템의 운영이 권고된다. 여기서 터널 내 설치된 CCTV는 터널 구조물의 공간적인 한계로 인해 낮은 높이로 설치된다. 이에 따라 이동차량과 매우 인접하므로, 이동차량과 CCTV와의 거리에 따른 원근현상이 매우 심하다. 이로 인해, 기존 터널 영상유고시스템은 터널 CCTV로부터 멀리 떨어질수록 차량의 정차 및 역주행, 보행자 출현 및 화재 발생과 같은 터널 내 유고상황을 인지하기 매우 어려우며, 100 m 이상의 거리에서는 높은 유고상황 인지 성능을 기대하기 어려운 것으로 알려져 있다. 이 문제를 해결하기 위해 관심영역 설정 및 역 원근변환(Inverse perspective transform)을 도입하였으며, 이 과정을 통해 얻은 변환영상은 먼 거리에 있는 객체의 크기가 확대된다. 이에 따라 거리에 따라 객체의 크기가 비교적 일정하게 유지되므로, 거리에 따른 객체 인식 성능과 영상에서 보이는 차량의 이동속도 또한 일관성을 유지할 수 있다. 이를 증명하기 위해 본 논문에서는 터널 CCTV의 원본영상과 변환영상을 바탕으로 동일한 조건을 가지는 데이터셋을 각각 제작 및 구성하였으며, 영상 내 차량의 실제 위치의 변화에 따른 겉보기 속도와 객체 크기를 비교하였다. 그 다음 딥러닝 객체인식 모델의 학습 및 추론을 통해 각 영상 데이터셋에 대한 거리에 따른 객체인식 성능을 비교하였다. 결과적으로 변환영상을 사용한 모델은 200 m 이상의 거리에서도 객체인식 성능과 이동차량의 유고상황 인지 성능을 확보할 수 있음을 보였다.

In domestic tunnels, it is mandatory to install CCTVs in tunnels longer than 200 m which are also recommended by installation of a CCTV-based automatic accident detection system. In general, the CCTVs in the tunnel are installed at a low height as well as near by the moving vehicles due to the spatial limitation of tunnel structure, so a severe perspective effect takes place in the distance of installed CCTV and moving vehicles. Because of this effect, conventional CCTV-based accident detection systems in tunnel are known in general to be very hard to achieve the performance in detection of unexpected accidents such as stop or reversely moving vehicles, person on the road and fires, especially far from 100 m. Therefore, in this study, the region of interest is set up and a new concept of inverse perspective transformation technique is introduced. Since moving vehicles in the transformed image is enlarged proportionally to the distance from CCTV, it is possible to achieve consistency in object detection and identification of actual speed of moving vehicles in distance. To show this aspect, two datasets in the same conditions are composed with the original and the transformed images of CCTV in tunnel, respectively. A comparison of variation of appearance speed and size of moving vehicles in distance are made. Then, the performances of the object detection in distance are compared with respect to the both trained deep-learning models. As a result, the model case with the transformed images are able to achieve consistent performance in object and accident detections in distance even by 200 m.

키워드

과제정보

본 연구는 과학기술정보통신부 한국건설기술연구원 연구운영비지원(주요사업)사업으로 수행되었습니다(과제번호 20220124-001, 극한건설 환경 구현 인프라 및 TRL6 이상급 극한건설 핵심기술 개발).

참고문헌

  1. Bertozz, M., Broggi, A., Fascioli, A. (1998), "Stereo inverse perspective mapping: theory and applications", Image and Vision Computing, Vol. 16, No. 8, pp. 585-590. https://doi.org/10.1016/S0262-8856(97)00093-0
  2. Eggert, C., Brehm, S., Winschel, A., Zecha, D., Lienhart, R. (2017), "A closer look: small object detection in faster R-CNN", Proceedings of the 2017 IEEE International Conference on Multimedia and Expo (ICME), Hong Kong, pp. 421-426.
  3. Galeano, D.B., Devy, M., Boizard, J.L., Filali, W. (2011), "Real-time architecture on FPGA for obstacle detection using inverse perspective mapping", Proceedings of the 2011 18th IEEE International Conference on Electronics, Circuits, and Systems, Beirut, pp. 788-791.
  4. Gyeonggi Province (2022), Road tunnel information status (open standard).
  5. He, K., Zhang, X., Ren, S., Sun, J. (2016), "Deep residual learning for image recognition", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, pp. 770-778.
  6. Juliani, A., Berges, V.P., Teng, E., Cohen, A., Harper, J., Elion, C., Goy, C., Gao, Y., Henry, H., Mattar, M., Lange, D. (2018), "Unity: A general platform for intelligent agents", arXiv preprint, arXiv:1809.02627.
  7. LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., Jackel, L. (1990), "Handwritten digit recognition with a back-propagation network", Advances in Neural Information Processing Systems, pp. 396-404.
  8. LeCun, Y., Yoshua, B., Hinton, G. (2015), "Deep learning", Nature, Vol. 521, pp. 436-444. https://doi.org/10.1038/nature14539
  9. Lee, E.S., Choi, W., Kum, D. (2019), "Bird's eye view localization of surrounding vehicles: longitudinal and lateral distance estimation with partial appearance", Robotics and Autonomous Systems, Vol. 112, pp. 178-189. https://doi.org/10.1016/j.robot.2018.11.008
  10. Lee, H.S., Jeong, S.H., Lee, J.W. (2011), "Real-time lane violation detection system using feature tracking", The KIPS Transactions: Part B, Vol. 18, No. 4, pp. 201-212.
  11. Mallot, H.A., Bulthoff, H.H., Little, J.J., Bohrer, S. (1991), "Inverse perspective mapping simplifies optical flow computation and obstacle detection", Biological Cybernetics, Vol. 64, No. 3, pp. 177-185. https://doi.org/10.1007/BF00201978
  12. Min, Z., Ying, M., Dihua, S. (2019), "Tunnel pedestrian detection based on super resolution and convolutional neural network", Proceedings of the 2019 Chinese Control and Decision Conference (CCDC), Nanchang, pp. 4635-4640.
  13. MOLIT (2010), ITS project implementation guidelines, Ministry of Land, Infrastructure and Transport.
  14. MOLIT (2021), Guideline of installation and management of disaster prevention facilities on road tunnels, Ministry of Land, Infrastructure and Transport.
  15. Padilla, R., Passos, W.L., Dias, T.L., Netto, S.L., da Silva, E.A. (2021), "A comparative analysis of object detection metrics with a companion open-source toolkit", Electronics, Vol. 10, No. 3, 279. https://doi.org/10.3390/electronics10030279
  16. Pflugfelder, R., Bischof, H., Dominguez, G.F., Nolle, M., Schwabach, H. (2005), "Influence of camera properties on image analysis in visual tunnel surveillance", Proceedings of the 2005 IEEE Intelligent Transportation Systems, Vienna, pp. 868-873.
  17. Ren, S., He, K., Girshick, R., Sun, J. (2015), "Faster R-CNN: Towards real-time object detection with region proposal networks", Advances in Neural Information Processing Systems, Montreal.
  18. Shin, H.S., Kim, D.G., Yim, M.J., Lee, K.B., Oh, Y.S. (2017a), "A preliminary study for development of an automatic incident detection system on CCTV in tunnels based on a machine learning algorithm", Journal of Korean Tunnelling and Underground Space Association, Vol. 19, No. 1, pp. 95-107. https://doi.org/10.9711/KTAJ.2017.19.1.095
  19. Shin, H.S., Lee, K.B., Yim, M.J., Kim, D.G. (2017b), "Development of a deep-learning based tunnel incident detection system on CCTVs", Journal of Korean Tunnelling and Underground Space Association, Vol. 19, No. 6, pp. 915-936. https://doi.org/10.9711/KTAJ.2017.19.6.915
  20. Tong, K., Wu, Y., Zhou, F. (2020), "Recent advances in small object detection based on deep learning: a review", Image and Vision Computing, Vol. 97, 103910. https://doi.org/10.1016/j.imavis.2020.103910
  21. Tsai, C.M., Hsieh, J.W., Shih, F.Y. (2016), "Motion-based vehicle detection in Hsuehshan Tunnel", Proceedings of the 2016 Eighth International Conference on Advanced Computational Intelligence (ICACI), Chiang Mai, pp. 385-389.
  22. Zhu, M. (2004), Recall, precision and average precision, Department of Statistics and Actuarial Science, University of Waterloo, Waterloo.
  23. Zou, Z., Shi, Z., Guo, Y., Ye, J. (2019), "Object detection in 20 years: a survey", arXiv preprint, arXiv:1905.05055.