참고문헌
- Ahn, M. L., Choi, Y. Y., Bae, Y. H., & Kim, M. H. (2016). A Literature Review on Learning Analytics: Exploratory study of empirical researches utilizing log data in Korea. Journal of Educational Technology, 32(2), 253-291. https://doi.org/10.17232/KSET.32.2.253
- Alharbi, S., & Drew, S. (2014). Using the technology acceptance model in understanding academics' behavioural intention to use learning management systems. International Journal of Advanced Computer Science and Applications, 5(1), 143-155. https://doi.org/10.14569/IJACSA.2014.050120
- Biau, G., & Scornet, E. (2016). A random forest guided tour. Test, 25(2), 197-227. https://doi.org/10.1007/s11749-016-0488-0
- Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees. CRC press.
- Breiman, L. (1996). Bagging predictors. Machine Learning. 24(2), 123-140. https://doi.org/10.1007/BF00058655
- Breiman, L. (2001). Random Forests. Machine Learning. 45(1), 5-32. https://doi.org/10.1023/A:1010933404324
- Bureau, A., Dupuis, J., Falls, K., Lunetta, K. L., Hayward, B., Keith, T. P., & Van, E. P. (2005). Identifying SNPs predictive of phenotype using random forests. Genetic Epidemiology: The Official Publication of the International Genetic Epidemiology Society, 28(2), 171-182. https://doi.org/10.1002/gepi.20041
- Charles, R. I., & Lester, F. K. (1984). An evaluation of a process-oriented instructional program in mathematical problem solving in grades 5 and 7. Journal for Research in Mathematics Education, 15(1), 15-34. https://doi.org/10.5951/jresematheduc.15.1.0015
- Dani, A. (2016). Students' patterns of interaction with a mathematics intelligent tutor: Learning analytics application. arXiv preprint arXiv:1607.07284. https://doi.org/10.5121/ijite.2016.5201
- Elias, T. (2011). Learning analytics: Definitions, process and potential. Learning, 23.
- Friedman, J. H. (2001). Greedy Function Approximation: A Gradient Boosting Machine. Annals of Statistics, 1189-1232. https://doi.org/10.1214/aos/1013203451
- Hong, H. J. (2017). The Effect of Self Efficacy and Self-Regulated Learning on Learning Persistence in Blended Learning Based Basic Mathematics Class. Journal of Educational Technology, 20(6), 3-11. https://doi.org/10.18108/jeer.2017.20.6.3
- Jo, I. H. (2012). Proposal of LAPA (Learning Analytics for Prediction & Action) model. Review of Korean Society of Management Information System Research Seminar 2012, Seoul.
- Jo, I. H. (2015). Learning analysis department, learning design, and development of its convergence topography. Review of Conference of Korean Society of Educational Technology, 2015(2), 422-434.
- Jo, I. H., Park, Y. J., & KIM, J. H. (2019). Understanding Learning Analytics. Park Young Story
- Jo, I., Park, Y., Yoon, M., & Sung, H. (2016). Evaluation of Online log variables that estimate learner's time management in a Korean online learning context. The International Review of Research in Open and Distributed Learning, 17(1), 195-213. https://doi.org/10.19173/irrodl.v17i1.2176
- Jo, Y. S. (2014). Potential and Prospects of Learning Analytics Technology Utilization. Information and Communications Magazine, 31(12), 73-80.
- Jordan, M. M., & Duckett, N. D. (2018). Universities Confront 'Tech Disruption': Perceptions of Student Engagement Online Using Two Learning Management Systems. The Journal of Public and Professional Sociology, 10(1), 4.
- Kakasevski, G., Mihajlov, M., Arsenovski, S., & Chungurski, S. (2008, June). Evaluating usability in learning management system Moodle. In Iti 2008-30th international conference on information technology interfaces(pp.613-618). IEEE. https://doi.org/10.1109/ITI.2008.4588480
- Ko, H. K., Yang, K. S., & Lee, H. Y. (2015). Development of the Diagnostic Worksheet for Mathematics Academic Counseling. Communications of Mathematical Education, 29(4), 723-743. https://doi.org/10.7468/jksmee.2015.29.4.723
- Kim, A. N. (2021). Analysis of Learner Behavior and Learning Performance using LMS Big Data in the COVID-19: Focused on J-University. Korean Association For Learner-Centered Curriculum And Instruction, 21(6), 565-579. https://doi.org/10.22251/jlcci.2021.21.8.565
- Kim, H. K. (2020). Meta analysis on the improvement of academic performance by the teaching method for underachievers of learning mathematics. The Mathematical Education, 59(1), 31-45. https://doi.org/10.7468/mathedu.2020.59.1.31
- Lang, L., & Pirani. J, A. (2014). The Learning Management System Evolution. Research bulletin. Louisville, CO: ECAR, May 20, 2014.
- Lim, J. H. (2009). A Study on the Design Strategies of Teaching and Learning Model for Mobile Learning, The Journal of Korean Educational Practice, 8(1), 101-124.
- McMillan, J. H. (2014). Classroom Assessment: Principles and Practice for Effective Standards-Based Instruction, 6th Edition. Pearson.
- Ministry of Education (2020, May 26). Science, Mathematics, Information, Convergence Education Comprehensive Plan ('20~'24). Ministry of Education. https://www.moe.go.kr/boardCnts/viewRenew.do?boardID=294&lev=0&statusYN=W&s=moe&m=020402&opType=N&boardSeq=80718
- Montebello, M. (2021, August). Personalized Learning Environments. In 2021 International Symposium on Educational Technology (ISET) (pp. 134-138). IEEE. https://doi.org/10.1109/ISET52350.2021.00036
- Mullis, I. V., Martin, M. O., Foy, P., & Arora, A. (2012). TIMSS 2011 international results in mathematics. International Association for the Evaluation of Educational Achievement. Herengracht 487, Amsterdam, 1017 BT, The Netherlands.
- Murshitha, S. M. (2013). The effect of lecturers' performance on students' LMS adoption. In Proceedings of the Third International Symposium 2013, 19-24.
- Nagy, J. (2016). Using learning management systems in business and economics studies in Hungarian higher education. Education and Information Technologies, 21(4), 897-917. https://doi.org/10.1007/s10639-014-9360-6
- Nichols, M. (2003). A theory for eLearning. Journal of Educational Technology & Society, 6(2), 1-10.
- Oviatt, S. (2013, December). Problem solving, domain expertise and learning: Ground-truth performance results for math data corpus. In Proceedings of the 15th ACM on International conference on multimodal interaction (pp. 569-574). https://doi.org/10.1145/2522848.2533791
- Park, H. S. (2019). Do it! Introduction to deep learning that you can learn coding honestly. Easyspublishing.
- Park, M., Lim H., Kim, J. Y., Lee, K. H., & Kim, M. (2020). The effects on the personalized learning platform with machine learning recommendation modules: Focused on learning time, self-directed learning ability, attitudes toward mathematics, and mathematics achievement. The Mathematical Education, 59(4), 373-387. https://doi.org/10.7468/mathedu.2020.59.4.373
- Romero, C., & Ventura, S. (2006). Data mining in e-learning(Vol. 4). Wit Press. https://doi.org/10.2495/1-84564-152-3
- Schoenfeld, A. H. (1985). Making sense of "out loud" problem-solving protocols. The Journal of Mathematical Behavior, 4(2), 171-191.
- Shin, S. B., & Cho, H. J. (2021). Correlated variable importance for random forests. The Korean Journal of Applied Statistics, 34(2), 177-190. https://doi.org/10.5351/KJAS.2021.34.2.177
- Siemens, G., & Long, P. (2011). Penetrating the fog: Analytics in learning and education. EDUCAUSE review, 46(5), 30.
- Tempelaar, D. T., Heck, A., Cuypers, H., Kooij H., & Vrie. E. (2013, April). Formative assessment and learning analytics. Proceedings of the Third International Conference on Learning Analytics and Knowledge. Association for Computing Machinery, USA, 205-209. https://doi.org/10.1145/2460296.2460337
- Tempelaar, D. T., Rienties, B., & Giesbers, B. (2014). Computer assisted, formative assessment and dispositional Learning Analytics in learning mathematics and statistics. Communications in Computer and Information Science, 439, 67-78. https://doi.org/10.1007/978-3-319-08657-6_7
- Wolff, A., Zdrahal, Z., Nikolov, A., & Pantucek, M. (2013, April). Improving retention: predicting at-risk students by analysing clicking behaviour in a virtual learning environment. In Proceedings of the third international conference on learning analytics and knowledge. Association for Computing Machinery, USA, 145-149. https://doi.org/10.1145/2460296.2460324
- Qi, Y. (2012). Random forest for bioinformatics. In Zhang, C., Ma, Y. (eds) Ensemble Machine Learning (pp. 307-323). Springer. https://doi.org/10.1007/978-1-4419-9326-7_11