References
- K. Abodayeh, T. Qawasmeh, W. Shatanawi and A. Tallafha, ϵ𝜑-contraction and some fixed point results via modified ω-distance mappings in the frame of complete quasi metric spaces and applications, Inter. J. Electrical Comp. Eng., 10(4) (2020), 3839-3853. https://doi.org/10.11591/ijece.v10i4.pp3839-3853
- H. Aydi, E. Karapinar and M. Postolache, Tripled coincidence point theorems for weak phi-contractions in partially ordered metric spaces, Fixed Point Theory and Appl., 44 (2012).
- H. Aydi, M. Postolache and W. Shatanawi, Coupled fixed point results for (Ψ, Φ)-weakly contractive mappings in ordered G-metric spaces, Comput. Math. Appl., 63 (2012), 298-309. https://doi.org/10.1016/j.camwa.2011.11.022
- H. Aydi, W. Shatanawi, M. Postolache, Z. Mustafa, and N. Tahat, Theorems for Boyd-Wong-Type Contractions in Ordered Metric Spaces, Abstr. Appl. Anal., 2012, Article ID 359054, (2012), 14 pages.
- H. Aydi, W. Shatanawi and C. Vetro, On generalized weak G-contraction mapping in G-metric spaces, Comput. Math. Appl., 62 (2011), 4223-4229.
- I.A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal., Gos. Ped. Inst., Unianowsk, 30 (1989), 26-37.
- S. Banach, Sur Les operations dans les ensembles abstraits et leur application aux equations integrals, Fund. Math., 3 (1922), 133-181. https://doi.org/10.4064/fm-3-1-133-181
- A. Bataihah, W. Shatanawi, T. Qawasmeh and R. Hatamleh, On H-Simulation Functions and Fixed Point Results in the Setting of wt-Distance Mappings with Application on Matrix Equations, Mathematics, 8(5) (2020), 837; https://doi.org/10.3390/math8050837.
- A. Bataihah, A. Tallafha and W. Shatanawi, Fixed point results with Ω-distance by utilizing simulation functions, Ital. J. Pure Appl. Math., 43, (2020), 185-196.
- A. Bataihah, W. Shatanawi and A. Tallafha, Fixed point results with simulation functions, Nonlinear Funct. Anal. App., 25(1), (2020), 13-23.
- V. Berinde, Generalized coupled fixed point theorems for mixed monotone mappings in partially ordered metric spaces, Nonlinear Anal. 74 (2011), 7347-7355. https://doi.org/10.1016/j.na.2011.07.053
- S. Chandok and M. Postolache, Fixed point theorem for weakly Chatterjea-type cyclic contractions, Fixed Point Theory Appl., 2013 (2013).
- L.B. Ciric, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 45 (1974), 267-273. https://doi.org/10.1090/S0002-9939-1974-0356011-2
- S. Czerwik, Contraction mappings in b-metric spaces, Acta mathematica et informatica universitatis ostraviensis, 1(1) (1993), 5-11.
- H.S. Ding and E. Karapinar, Meir-Keeler type contractions in partially ordered G-metric spaces, Fixed Point Theory Appl., 2013, Article ID 2013:35, (2013), 1-10. https://doi.org/10.1186/1687-1812-2013-1
- M. Jleli and B. Samet, Remarks on G-metric spaces and fixed point theorems, Fixed Point Theory Appl., Article ID 210, (2012).
- R. Kannan, Some results on fixed point, Bull. Calcutta Math. Soc., 60 (1968), 71-76.
- J.K. Kim, M. Kumar, P. Bhardwaj and M. Imdad, Common fixed point theorems for generalized 𝜓∫𝜑-weakly contractive mappings in G-metric spaces, Nonlinear Funct. Anal. Appl., 26(3) (2021), 565-580. https://doi.org/10.22771/NFAA.2021.26.03.08
- N.V. Luong and N.X. Thuan, Coupled fixed point theorems in partially ordered G-metric spaces, Math. Comput. Model., 55 (2012), 1601-1609. https://doi.org/10.1016/j.mcm.2011.10.058
- Z. Mustafa, M. Khandaqji and W. Shatanawi, Fixed point results on complete G-metric spaces, Stud. Sci. Math. Hung., 48 (2011), 304-319. https://doi.org/10.1556/SScMath.48.2011.3.1170
- Z. Mustafa, H. Obiedat and F. Awawdeh, Some fixed point theorem for mapping on complete G-metric spaces, Fixed Point Theory Appl., Article ID 189870, (2008), 1-12.
- Z. Mustafa and B. Sims, Fixed point theorems for contractive mappings in complete G-metric spaces, Fixed Point Theory Appl. , Article ID 917175, (2009), 1-10.
- Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7(2) (2006), 289-297.
- J. Oudetallah, M. Rousan and I. Batiha, On D-Metacompactness In Topological Spaces, J. Appl. Math. & Informatics, 39 (2021), 919-926. https://doi.org/10.14317/JAMI.2021.919
- T. Qawasmeh, W. Shatanawi, A. Bataihah and A. Tallafha, Common Fixed Point Results for Rational (α, β)𝜑-mω Contractions in Complete Quasi Metric Spaces, Mathematics, 7(5) (2019), 392. https://doi.org/10.3390/math7050392
- T. Qawasmeh, A. Tallafha and W. Shatanawi, Fixed and common fixed point theorems through modified ω-distance mappings, Nonlinear Funct. Anal. Appl., 24(2) (2019), 221-239.
- T. Qawasmeh, A. Tallafha and W. Shatanawi, Fixed Point Theorems through Modified ω-Distance and Application to Nontrivial Equations, Axioms, 8(2) (2019), 57. https://doi.org/10.3390/axioms8020057
- W. Shatanawi, Common Fixed Points for Mappings under Contractive Conditions of (α, β, 𝜓)-Admissibility Type, Mathematics, 6 (2018).
- W. Shatanawi and M. Postolache, Common fixed point results for mappings under nonlinear contraction of cyclic form in ordered metric spaces, Fixed Point Theory and Applications, 2013 (2013).
- T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc. 136 (2008), 1861-1869. https://doi.org/10.1090/S0002-9939-07-09055-7
- J. Yadav, M. Kumar, Reena, M. Imdad and S. Arora, Fixed point theorems for (ξ, β)-expansive mapping in g-metric space using control function, Nonlinear Funct. Anal. Appl., 26(5) (2021), 949-959. https://doi.org/10.22771/NFAA.2021.26.05.06
- D. Zheng, Fixed point theorems for generalized 𝜃 - 𝜙-contractions in G-metric spaces, J. Funct. Spaces, (2018), 8 pages.
- D. Zheng, Z. Cai and P. Wang, New fixed point theorems for 𝜃-𝜙-contraction in complete metric spaces, J. Nonlinear Sci. Appl., 10(5) (2017), 2662-2670. https://doi.org/10.22436/jnsa.010.05.32