DOI QR코드

DOI QR Code

ANTI-HYBRID INTERIOR IDEALS IN ORDERED SEMIGROUPS

  • LINESAWAT, KRITTIKA (Division of Mathematics, Faculty of Engineering, Rajamangala University of Technology Isan, Khon Kaen Campus) ;
  • LEKKOKSUNG, SOMSAK (Division of Mathematics, Faculty of Engineering, Rajamangala University of Technology Isan, Khon Kaen Campus) ;
  • LEKKOKSUNG, NAREUPANAT (Division of Mathematics, Faculty of Engineering, Rajamangala University of Technology Isan, Khon Kaen Campus)
  • Received : 2021.10.26
  • Accepted : 2022.01.24
  • Published : 2022.05.30

Abstract

The main theme of this present paper is to study ordered semigroups in the context of anti-hybrid interior ideals. The notion of anti-hybrid interior ideals in ordered semigroups is introduced. We prove that the concepts of ideals and interior coincide in some particular classes of ordered semigroups; regular, intra-regular, and semisimple. Finally, the characterization of semisimple ordered semigroups in terms of anti-hybrid interior ideals is considered.

Keywords

References

  1. H. Aktas and N. Cagman, Soft sets and soft groups, Inf. Sci. 177 (2017), 2726-2735. https://doi.org/10.1016/j.ins.2006.12.008
  2. S. Anis, M. Khan and Y.B. Jun, Hybrid ideals in semigroups, Cogent Math. 4 (2007), 1-12.
  3. W.A. Dudek and Y.B. Jun, Int-soft interior ideals of semigroups, Quasigroups Related Systems 22 (2014), 201-208.
  4. B. Elavarasan, K. Porselvi and Y.B. Jun, Hybrid generalized bi-ideals in semigroups, Int. J. Math. Comput. Sci. 14 (2019), 601-612.
  5. B. Elavarasan and Y.B. Jun, Regularity of semigroups in terms of hybrid ideals and hybrid bi-ideals, Kragujevac J. Math. 46 (2022), 857-864. https://doi.org/10.46793/KgJMat2206.857E
  6. B. Elavarasan, G. Muhiuddin, K. Porselvi and Y.B. Jun, Hybrid structures applied to ideals in near-rings, Complex & Intell. Syst. 7 (2021), 1489-1498. https://doi.org/10.1007/s40747-021-00271-7
  7. F. Feng, Y.B. Jun and X. Zhao, Soft semirings, Comput. Math. Appl. 56 (2008), 2621-2628. https://doi.org/10.1016/j.camwa.2008.05.011
  8. Y.B. Jun, S.Z. Song and G. Muhiuddin, Hybrid structures and applications, Ann. Comm. Math. 1 (2018), 11-25.
  9. N. Kehayopulu and M. Tsingelis, Fuzzy interior ideals in ordered semigroups, Lobachevskii J. Math. 21 (2006), 65-71.
  10. N. Kehayopulu and M. Tsingelis, Fuzzy ideals in ordered semigroups, Quasigroups Related Systems 15 (2007), 279-289.
  11. N. Kehayopulu, Characterization of left quasi-regular and semisimple ordered semigroups in terms of fuzzy sets, Int. J. Algebra 6 (2010), 747-755.
  12. M. Khan, M. Gulistan, N. Yaqoob and M. Shabir, Neutrosophic cubic (α, β)-ideals in semigroups with application, J. Intell. Fuzzy Syst. 35 (2018), 2469-2483. https://doi.org/10.3233/JIFS-18112
  13. A. Khan, J.B. Jun and M.Z. Abbas, Characterizations of ordered semigroups in terms of (ϵ, ϵ ∨ q)-fuzzy interior ideals, Neural. Comput. Appl. 21 (2012), 433-440. https://doi.org/10.1007/s00521-010-0463-8
  14. M. Khan, Y.B. Jun, M. Gulistan and N. Yaqoob, The generalized version of Jun's cubic sets in semigroups, J. Intell. Fuzzy Syst. 28 (2015), 947-960. https://doi.org/10.3233/IFS-141377
  15. A. Khan, N.H. Sarmin, F.M. Khan and B. Davvaz, A study of fuzzy soft interior ideals of ordered semigroups, Iran. J. Sci. Technol. Trans. A Sci. 37A3 (2013), 237-249.
  16. A. Khan and M. Shabir, (α, β)-fuzzy interior ideals in ordered semigroups, Lobachevskii J. Math. 30 (2009), 30-39. https://doi.org/10.1134/S1995080209010053
  17. N. Kuroki, Fuzzy bi-ideals in semigroups, Comment. Math. Univ. St. Pauli 28 (1979), 17-21.
  18. N. Kuroki, On fuzzy ideals and fuzzy bi-ideals in semigroups, Fuzzy Sets and Systems 5 (1981), 203-215. https://doi.org/10.1016/0165-0114(81)90018-X
  19. K. Linesawat and S. Lekkoksung, Characterizing some regularities of ordered semigroups by their anti-hybrid ideals, (accepted), (2022).
  20. K. Linesawat, N. Sarasit, H. Sanpan, S. Lekkoksung, A. Charoenpol and N. Lekkoksung, Anti-hybrid ideals in ordered semigroups, Proceedings of the 12nd Engineering, Science, Technology and Architecture Conference 2021 (ESTACON 2021), (2021), 1372-1380.
  21. J. Mekwian and N. Lekkoksung, Hybrid ideals in ordered semigroups and some characterizations of their regularities, J. Math. Comput. Sci. 11 (2021), 8075-8092.
  22. J. Mekwian, N. Sarasit, S. Winyoo, K. Linesawat, P. Sangkapate and S. Lekkoksung, On anti-hybrid quasi-ideals in ordered semigroups, Proceedings of the 12nd Engineering, Science, Technology and Architecture Conference 2021 (ESTACON 2021), (2021), 1422-1429.
  23. D. Molodtsov, Soft set theory first results, Comput. Math. Appl. 37 (1999), 19-31. https://doi.org/10.1016/S0898-1221(99)00056-5
  24. G. Muhiuddin and A. Mahboob, Int-soft ideals over the soft sets in ordered semigroups, AIMS Math. 5 (2000), 2412-2423. https://doi.org/10.3934/math.2020159
  25. G. Muhiuddin, J.C. Grace John, B. Elavarasan, Y.B. Jun and K. Porselvi, Hybrid structures applied to modules over semirings, J. Intell. Fuzzy Syst. (in press), 2021.
  26. S. Naz and M. Shabir, On soft semihypergroups, J. Intell. Fuzzy Syst. 26 (2014), 2203-2213. https://doi.org/10.3233/IFS-130894
  27. S. Naz and M. Shabir, On prime soft bi-hyperideals of semihypergroups, J. Intell. Fuzzy Syst. 26 (2014), 1539-1546. https://doi.org/10.3233/IFS-130837
  28. N. Sarasit, K. Linesawat, S. Lekkoksung and N. Lekkoksung, On anti-hybrid subsemigroups of ordered semigroups, Proceedings of the 12nd Engineering, Science, Technology and Architecture Conference 2021 (ESTACON 2021), (2021), 1430-1436.
  29. M. Shabir and A. Khan, Intuitionistic fuzzy interior ideals in ordered semigroups, J. Appl. Math. & Informatics 59 (2010), 539-549.
  30. S.Z. Song, H.S. Kim and Y.B. Jun, Ideal theory in semigroups based on intersectional soft sets, Sci. World J. 2014 (2014), Article ID 136424, 7 pages.
  31. L.A. Zadeh, Fuzzy sets, Inform. Control 8 (1965), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X