DOI QR코드

DOI QR Code

Trypanosoma cruzi Dysregulates piRNAs Computationally Predicted to Target IL-6 Signaling Molecules During Early Infection of Primary Human Cardiac Fibroblasts

  • Ayorinde Cooley (Department of Microbiology, Immunology and Physiology, Meharry Medical College) ;
  • Kayla J. Rayford (Department of Microbiology, Immunology and Physiology, Meharry Medical College) ;
  • Ashutosh Arun (Department of Microbiology, Immunology and Physiology, Meharry Medical College) ;
  • Fernando Villalta (Department of Microbiology, Immunology and Physiology, Meharry Medical College) ;
  • Maria F. Lima (Department of Cell, Molecular, and Biomedical Sciences, School of Medicine, The City College of New York) ;
  • Siddharth Pratap (School of Graduate Studies and Research, Meharry Medical College) ;
  • Pius N. Nde (Department of Microbiology, Immunology and Physiology, Meharry Medical College)
  • Received : 2022.03.17
  • Accepted : 2022.10.26
  • Published : 2022.12.31

Abstract

Trypanosoma cruzi, the etiological agent of Chagas disease, is an intracellular protozoan parasite, which is now present in most industrialized countries. About 40% of T. cruzi infected individuals will develop severe, incurable cardiovascular, gastrointestinal, or neurological disorders. The molecular mechanisms by which T. cruzi induces cardiopathogenesis remain to be determined. Previous studies showed that increased IL-6 expression in T. cruzi patients was associated with disease severity. IL-6 signaling was suggested to induce pro-inflammatory and pro-fibrotic responses, however, the role of this pathway during early infection remains to be elucidated. We reported that T. cruzi can dysregulate the expression of host PIWI-interacting RNAs (piRNAs) during early infection. Here, we aim to evaluate the dysregulation of IL-6 signaling and the piRNAs computationally predicted to target IL-6 molecules during early T. cruzi infection of primary human cardiac fibroblasts (PHCF). Using in silico analysis, we predict that piR_004506, piR_001356, and piR_017716 target IL6 and SOCS3 genes, respectively. We validated the piRNAs and target gene expression in T. cruzi challenged PHCF. Secreted IL-6, soluble gp-130, and sIL-6R in condition media were measured using a cytokine array and western blot analysis was used to measure pathway activation. We created a network of piRNAs, target genes, and genes within one degree of biological interaction. Our analysis revealed an inverse relationship between piRNA expression and the target transcripts during early infection, denoting the IL-6 pathway targeting piRNAs can be developed as potential therapeutics to mitigate T. cruzi cardiomyopathies.

Keywords

Acknowledgement

We are grateful to the Molecular Biology Core Facility and the Morphology Core at Meharry Medical College. This work was supported by NIH grants 1SC1AI27352 (PNN), 2T32AI007281-31 (AC), 2T32HL007737-26 (AC), 5R25GM05994 (KJR), F31AI167579 (KJR), and U54MD007586 (FV). The funders had no role in the study design, data collection, and analysis, decision to publish, or preparation of the manuscript.

References

  1. Abuhab A, Trindade E, Aulicino GB, Fujii S, Bocchi EA, Bacal F. Chagas' cardiomyopathy: the economic burden of an expensive and neglected disease. Int J Cardiol 2013;168:2375-2380.  https://doi.org/10.1016/j.ijcard.2013.01.262
  2. Olivera MJ, Buitrago G. Economic costs of Chagas disease in Colombia in 2017: a social perspective. Int J Infect Dis 2020;91:196-201.  https://doi.org/10.1016/j.ijid.2019.11.022
  3. Lidani KC, Andrade FA, Bavia L, Damasceno FS, Beltrame MH, Messias-Reason IJ, Sandri TL. Chagas disease: from discovery to a worldwide health problem. Front Public Health 2019;7:166. 
  4. Nunes MCP, Beaton A, Acquatella H, Bern C, Bolger AF, Echeverria LE, Dutra WO, Gascon J, Morillo CA, Oliveira-Filho J, et al. Chagas cardiomyopathy: an update of current clinical knowledge and management: a scientific statement from the American Heart Association. Circulation 2018;138:e169-e209.  https://doi.org/10.1161/CIR.0000000000000599
  5. Gomes Dos Santos A, Watanabe EH, Ferreira DT, Oliveira J, Nakanishi ES, Oliveira CS, Bocchi E, Novaes CTG, Cruz F, Carvalho NB, et al. A specific IL6 polymorphic genotype modulates the risk of Trypanosoma cruzi parasitemia while IL18, IL17A, and IL1B variant profiles and HIV infection protect against cardiomyopathy in Chagas disease. Front Immunol 2020;11:521409. 
  6. Hoffman KA, Villar MJ, Poveda C, Bottazzi ME, Hotez PJ, Tweardy DJ, Jones KM. Signal transducer and activator of transcription-3 modulation of cardiac pathology in chronic Chagasic cardiomyopathy. Front Cell Infect Microbiol 2021;11:708325. 
  7. Lopez L, Arai K, Gimenez E, Jimenez M, Pascuzo C, Rodriguez-Bonfante C, Bonfante-Cabarcas R. C-reactive protein and interleukin-6 serum levels increase as Chagas disease progresses towards cardiac failure. Rev Esp Cardiol 2006;59:50-56.  https://doi.org/10.1016/S1885-5857(06)60048-0
  8. Fielding CA, Jones GW, McLoughlin RM, McLeod L, Hammond VJ, Uceda J, Williams AS, Lambie M, Foster TL, Liao CT, et al. Interleukin-6 signaling drives fibrosis in unresolved inflammation. Immunity 2014;40:40-50.  https://doi.org/10.1016/j.immuni.2013.10.022
  9. Gabay C. Interleukin-6 and chronic inflammation. Arthritis Res Ther 2006;8 Suppl 2:S3. 
  10. Hirano T. IL-6 in inflammation, autoimmunity and cancer. Int Immunol 2021;33:127-148.  https://doi.org/10.1093/intimm/dxaa078
  11. Kishimoto T. IL-6: from its discovery to clinical applications. Int Immunol 2010;22:347-352.  https://doi.org/10.1093/intimm/dxq030
  12. Chi L, Li Y, Stehno-Bittel L, Gao J, Morrison DC, Stechschulte DJ, Dileepan KN. Interleukin-6 production by endothelial cells via stimulation of protease-activated receptors is amplified by endotoxin and tumor necrosis factor-alpha. J Interferon Cytokine Res 2001;21:231-240.  https://doi.org/10.1089/107999001750169871
  13. Nguyen HN, Noss EH, Mizoguchi F, Huppertz C, Wei KS, Watts GF, Brenner MB. Autocrine loop involving IL-6 family member LIF, LIF receptor, and STAT4 drives sustained fibroblast production of inflammatory mediators. Immunity 2017;46:220-232.  https://doi.org/10.1016/j.immuni.2017.01.004
  14. Gubernatorova EO, Gorshkova EA, Polinova AI, Drutskaya MS. IL-6: relevance for immunopathology of SARS-CoV-2. Cytokine Growth Factor Rev 2020;53:13-24.  https://doi.org/10.1016/j.cytogfr.2020.05.009
  15. Galun E, Rose-John S. The regenerative activity of interleukin-6. Methods Mol Biol 2013;982:59-77. https://doi.org/10.1007/978-1-62703-308-4_4
  16. Johnson BZ, Stevenson AW, Prele CM, Fear MW, Wood FM. The role of IL-6 in skin fibrosis and cutaneous wound healing. Biomedicines 2020;8:101. 
  17. Yue B. Biology of the extracellular matrix: an overview. J Glaucoma 2014;23:S20-S23.  https://doi.org/10.1097/IJG.0000000000000108
  18. Peng CY, Liao YW, Lu MY, Yang CM, Hsieh PL, Yu CC. Positive feedback loop of Snail-IL-6 mediates myofibroblastic differentiation activity in precancerous oral submucous fibrosis. Cancers (Basel) 2020;12:E1611. 
  19. Hinz B. The role of myofibroblasts in wound healing. Curr Res Transl Med 2016;64:171-177.  https://doi.org/10.1016/j.retram.2016.09.003
  20. Klingberg F, Hinz B, White ES. The myofibroblast matrix: implications for tissue repair and fibrosis. J Pathol 2013;229:298-309.  https://doi.org/10.1002/path.4104
  21. Schumacher N, Meyer D, Mauermann A, von der Heyde J, Wolf J, Schwarz J, Knittler K, Murphy G, Michalek M, Garbers C, et al. Shedding of endogenous interleukin-6 receptor (IL-6R) is governed by a disintegrin and metalloproteinase (ADAM) proteases while a full-length IL-6R isoform localizes to circulating microvesicles. J Biol Chem 2015;290:26059-26071.  https://doi.org/10.1074/jbc.M115.649509
  22. Jones SA, Rose-John S. The role of soluble receptors in cytokine biology: the agonistic properties of the sIL-6R/IL-6 complex. Biochim Biophys Acta 2002;1592:251-263.  https://doi.org/10.1016/S0167-4889(02)00319-1
  23. Mullberg J, Schooltink H, Stoyan T, Gunther M, Graeve L, Buse G, Mackiewicz A, Heinrich PC, Rose-John S. The soluble interleukin-6 receptor is generated by shedding. Eur J Immunol 1993;23:473-480.  https://doi.org/10.1002/eji.1830230226
  24. Niemand C, Nimmesgern A, Haan S, Fischer P, Schaper F, Rossaint R, Heinrich PC, Muller-Newen G. Activation of STAT3 by IL-6 and IL-10 in primary human macrophages is differentially modulated by suppressor of cytokine signaling 3. J Immunol 2003;170:3263-3272.  https://doi.org/10.4049/jimmunol.170.6.3263
  25. O'Reilly S, Ciechomska M, Cant R, van Laar JM. Interleukin-6 (IL-6) trans signaling drives a STAT3-dependent pathway that leads to hyperactive transforming growth factor-β (TGF-β) signaling promoting SMAD3 activation and fibrosis via Gremlin protein. J Biol Chem 2014;289:9952-9960.  https://doi.org/10.1074/jbc.M113.545822
  26. Reeh H, Rudolph N, Billing U, Christen H, Streif S, Bullinger E, Schliemann-Bullinger M, Findeisen R, Schaper F, Huber HJ, et al. Response to IL-6 trans- and IL-6 classic signalling is determined by the ratio of the IL-6 receptor α to gp130 expression: fusing experimental insights and dynamic modelling. Cell Commun Signal 2019;17:46. 
  27. Murakami M, Kamimura D, Hirano T. Pleiotropy and specificity: insights from the interleukin 6 family of cytokines. Immunity 2019;50:812-831.  https://doi.org/10.1016/j.immuni.2019.03.027
  28. Fredj S, Bescond J, Louault C, Delwail A, Lecron JC, Potreau D. Role of interleukin-6 in cardiomyocyte/cardiac fibroblast interactions during myocyte hypertrophy and fibroblast proliferation. J Cell Physiol 2005;204:428-436.  https://doi.org/10.1002/jcp.20307
  29. Kumar S, Wang G, Zheng N, Cheng W, Ouyang K, Lin H, Liao Y, Liu J. HIMF (hypoxia-induced mitogenic factor)-IL (interleukin)-6 signaling mediates cardiomyocyte-fibroblast crosstalk to promote cardiac hypertrophy and fibrosis. Hypertension 2019;73:1058-1070.  https://doi.org/10.1161/HYPERTENSIONAHA.118.12267
  30. Lai YH, Lo CI, Wu YJ, Hung CL, Yeh HI. Cardiac remodeling, adaptations and associated myocardial mechanics in hypertensive heart diseases. Zhonghua Minguo Xinzangxue Hui Zazhi 2013.29:64-70. 
  31. Yajima T, Murofushi Y, Zhou H, Park S, Housman J, Zhong ZH, Nakamura M, Machida M, Hwang KK, Gu Y, et al. Absence of SOCS3 in the cardiomyocyte increases mortality in a gp130-dependent manner accompanied by contractile dysfunction and ventricular arrhythmias. Circulation 2011;124:2690-2701.  https://doi.org/10.1161/CIRCULATIONAHA.111.028498
  32. Rodriguez-Angulo H, Marques J, Mendoza I, Villegas M, Mijares A, Girones N, Fresno M. Differential cytokine profiling in Chagasic patients according to their arrhythmogenic-status. BMC Infect Dis 2017;17:221.
  33. Rodriguez-Angulo HO, Colombet-Naranjo D, Maza MC, Poveda C, Herreros-Cabello A, Mendoza I, Perera JC, Goyo JD, Girones N, Fresno M. Molecular remodeling of cardiac sinus node associated with acute Chagas disease myocarditis. Microorganisms 2021;9:2208. 
  34. Antunes D, Marins-Dos-Santos A, Ramos MT, Mascarenhas BA, Moreira CJ, Farias-de-Oliveira DA, Savino W, Monteiro RQ, de Meis J. Oral route driven acute Trypanosoma cruzi infection unravels an IL-6 dependent hemostatic derangement. Front Immunol 2019;10:1073. 
  35. Udoko AN, Johnson CA, Dykan A, Rachakonda G, Villalta F, Mandape SN, Lima MF, Pratap S, Nde PN. Early regulation of profibrotic genes in primary human cardiac myocytes by Trypanosoma cruzi. PLoS Negl Trop Dis 2016;10:e0003747. 
  36. Volta BJ, Bustos PL, Cardoni RL, De Rissio AM, Laucella SA, Bua J. Serum cytokines as biomarkers of early Trypanosoma cruzi infection by congenital exposure. J Immunol 2016;196:4596-4602.  https://doi.org/10.4049/jimmunol.1502504
  37. Rayford KJ, Cooley A, Rumph JT, Arun A, Rachakonda G, Villalta F, Lima MF, Pratap S, Misra S, Nde PN. piRNAs as modulators of disease pathogenesis. Int J Mol Sci 2021;22:2373. 
  38. Simonelig M. piRNAs, master regulators of gene expression. Cell Res 2014;24:779-780.  https://doi.org/10.1038/cr.2014.78
  39. Girard A, Sachidanandam R, Hannon GJ, Carmell MA. A germline-specific class of small RNAs binds mammalian PIWI proteins. Nature 2006;442:199-202.  https://doi.org/10.1038/nature04917
  40. Zhong F, Zhou N, Wu K, Guo Y, Tan W, Zhang H, Zhang X, Geng G, Pan T, Luo H, et al. A SnoRNA-derived piRNA interacts with human interleukin-4 pre-mRNA and induces its decay in nuclear exosomes. Nucleic Acids Res 2015;43:10474-10491.  https://doi.org/10.1093/nar/gkv954
  41. Rayford KJ, Cooley A, Arun A, Rachakonda G, Kleschenko Y, Villalta F, Pratap S, Lima MF, Nde PN. Trypanosoma cruzi modulates PIWI-interacting RNA expression in primary human cardiac myocytes during the early phase of infection. Int J Mol Sci 2020;21:E9439. 
  42. Gebert D, Neubert LK, Lloyd C, Gui J, Lehmann R, Teixeira FK. Large Drosophila germline piRNA clusters are evolutionarily labile and dispensable for transposon regulation. Mol Cell 2021;81:3965-3978.e5.  https://doi.org/10.1016/j.molcel.2021.07.011
  43. Martinez VD, Vucic EA, Thu KL, Hubaux R, Enfield KS, Pikor LA, Becker-Santos DD, Brown CJ, Lam S, Lam WL. Unique somatic and malignant expression patterns implicate PIWI-interacting RNAs in cancer-type specific biology. Sci Rep 2015;5:10423.  https://doi.org/10.1038/srep10423
  44. Arun A, Rayford KJ, Cooley A, Rana T, Rachakonda G, Villalta F, Pratap S, Lima MF, Sheibani N, Nde PN. Thrombospondin-1 expression and modulation of Wnt and hippo signaling pathways during the early phase of Trypanosoma cruzi infection of heart endothelial cells. PLoS Negl Trop Dis 2022;16:e0010074. 
  45. Schneider CA, Rasband WS, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Methods 2012;9:671-675.  https://doi.org/10.1038/nmeth.2089
  46. Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, Franz M, Grouios C, Kazi F, Lopes CT, et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 2010;38:W214-W220.  https://doi.org/10.1093/nar/gkq537
  47. Ponce NE, Carrera-Silva EA, Pellegrini AV, Cazorla SI, Malchiodi EL, Lima AP, Gea S, Aoki MP. Trypanosoma cruzi, the causative agent of Chagas disease, modulates interleukin-6-induced STAT3 phosphorylation via gp130 cleavage in different host cells. Biochim Biophys Acta 2013;1832:485-494.  https://doi.org/10.1016/j.bbadis.2012.12.003
  48. Ferreira LR, Ferreira FM, Laugier L, Cabantous S, Navarro IC, da Silva Candido D, Rigaud VC, Real JM, Pereira GV, Pereira IR, et al. Integration of miRNA and gene expression profiles suggest a role for miRNAs in the pathobiological processes of acute Trypanosoma cruzi infection. Sci Rep 2017;7:17990. 
  49. Laugier L, Ferreira LR, Ferreira FM, Cabantous S, Frade AF, Nunes JP, Ribeiro RA, Brochet P, Teixeira PC, Santos RH, et al. miRNAs may play a major role in the control of gene expression in key pathobiological processes in Chagas disease cardiomyopathy. PLoS Negl Trop Dis 2020;14:e0008889.
  50. Nisimura LM, Coelho LL, de Melo TG, Vieira PC, Victorino PH, Garzoni LR, Spray DC, Iacobas DA, Iacobas S, Tanowitz HB, et al. Trypanosoma cruzi promotes transcriptomic remodeling of the JAK/STAT signaling and cell cycle pathways in myoblasts. Front Cell Infect Microbiol 2020;10:255. 
  51. Oliveira AER, Pereira MCA, Belew AT, Ferreira LRP, Pereira LMN, Neves EGA, Nunes MDCP, Burleigh BA, Dutra WO, El-Sayed NM, et al. Gene expression network analyses during infection with virulent and avirulent Trypanosoma cruzi strains unveil a role for fibroblasts in neutrophil recruitment and activation. PLoS Pathog 2020;16:e1008781. 
  52. Kulkarni MM, Varikuti S, Terrazas C, Kimble JL, Satoskar AR, McGwire BS. Signal transducer and activator of transcription 1 (STAT-1) plays a critical role in control of Trypanosoma cruzi infection. Immunology 2015;145:225-231.  https://doi.org/10.1111/imm.12438
  53. Navarro IC, Ferreira FM, Nakaya HI, Baron MA, Vilar-Pereira G, Pereira IR, Silva AM, Real JM, De Brito T, Chevillard C, et al. MicroRNA transcriptome profiling in heart of Trypanosoma cruzi-infected mice: parasitological and cardiological outcomes. PLoS Negl Trop Dis 2015;9:e0003828. 
  54. Suman S, Rachakonda G, Mandape SN, Sakhare SS, Villalta F, Pratap S, Lima MF, Nde PN. Phosphoproteomic analysis of primary human colon epithelial cells during the early Trypanosoma cruzi infection phase. PLoS Negl Trop Dis 2018;12:e0006792. 
  55. Thiruvenkatarajan V, Meyer EJ, Jesudason D. Comment on Hamblin et al. Capillary ketone concentrations at the time of colonoscopy: a cross-sectional study with implications for SGLT2 inhibitor-treated type 2 diabetes. Diabetes Care 2021;44:e124-e126. Diabetes Care 2022;45:e15-e16.  https://doi.org/10.2337/dc21-1413
  56. Jones BC, Wood JG, Chang C, Tam AD, Franklin MJ, Siegel ER, Helfand SL. A somatic piRNA pathway in the Drosophila fat body ensures metabolic homeostasis and normal lifespan. Nat Commun 2016;7:13856. 
  57. Huang S, Yoshitake K, Asakawa S. A review of discovery profiling of PIWI-interacting RNAs and their diverse functions in metazoans. Int J Mol Sci 2021;22:11166. 
  58. Weick EM, Miska EA. piRNAs: from biogenesis to function. Development 2014;141:3458-3471.  https://doi.org/10.1242/dev.094037
  59. Watanabe T, Lin H. Posttranscriptional regulation of gene expression by Piwi proteins and piRNAs. Mol Cell 2014;56:18-27.  https://doi.org/10.1016/j.molcel.2014.09.012
  60. Herrera RN, Diaz de Amaya EI, Perez Aguilar RC, Joo Turoni C, Maranon R, Berman SG, Luciardi HL, Coviello A, Peral de Bruno M. Inflammatory and prothrombotic activation with conserved endothelial function in patients with chronic, asymptomatic Chagas disease. Clin Appl Thromb Hemost 2011;17:502-507.  https://doi.org/10.1177/1076029610375814
  61. McGeachy MJ, Bak-Jensen KS, Chen Y, Tato CM, Blumenschein W, McClanahan T, Cua DJ. TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat Immunol 2007;8:1390-1397.  https://doi.org/10.1038/ni1539
  62. Yamada D, Kobayashi S, Wada H, Kawamoto K, Marubashi S, Eguchi H, Ishii H, Nagano H, Doki Y, Mori M. Role of crosstalk between interleukin-6 and transforming growth factor-beta 1 in epithelial-mesenchymal transition and chemoresistance in biliary tract cancer. Eur J Cancer 2013;49:1725-1740.  https://doi.org/10.1016/j.ejca.2012.12.002
  63. Zhang XL, Topley N, Ito T, Phillips A. Interleukin-6 regulation of transforming growth factor (TGF)-beta receptor compartmentalization and turnover enhances TGF-beta1 signaling. J Biol Chem 2005;280:12239-12245.  https://doi.org/10.1074/jbc.M413284200
  64. Waghabi MC, Keramidas M, Calvet CM, Meuser M, de Nazare C Soeiro M, Mendonca-Lima L, Araujo-Jorge TC, Feige JJ, Bailly S. SB-431542, a transforming growth factor beta inhibitor, impairs Trypanosoma cruzi infection in cardiomyocytes and parasite cycle completion. Antimicrob Agents Chemother 2007;51:2905-2910.  https://doi.org/10.1128/AAC.00022-07
  65. Waghabi MC, Keramidas M, Feige JJ, Araujo-Jorge TC, Bailly S. Activation of transforming growth factor beta by Trypanosoma cruzi. Cell Microbiol 2005;7:511-517. https://doi.org/10.1111/j.1462-5822.2004.00481.x
  66. Zhu BM, Ishida Y, Robinson GW, Pacher-Zavisin M, Yoshimura A, Murphy PM, Hennighausen L. SOCS3 negatively regulates the gp130-STAT3 pathway in mouse skin wound healing. J Invest Dermatol 2008;128:1821-1829.  https://doi.org/10.1038/sj.jid.5701224
  67. Truyens C, Angelo-Barrios A, Torrico F, Van Damme J, Heremans H, Carlier Y. Interleukin-6 (IL-6) production in mice infected with Trypanosoma cruzi: effect of its paradoxical increase by anti-IL-6 monoclonal antibody treatment on infection and acute-phase and humoral immune responses. Infect Immun 1994;62:692-696.  https://doi.org/10.1128/iai.62.2.692-696.1994
  68. Ma F, Li Y, Jia L, Han Y, Cheng J, Li H, Qi Y, Du J. Macrophage-stimulated cardiac fibroblast production of IL-6 is essential for TGF β/Smad activation and cardiac fibrosis induced by angiotensin II. PLoS One 2012;7:e35144. 
  69. Cevey AC, Penas FN, Alba Soto CD, Mirkin GA, Goren NB. IL-10/STAT3/SOCS3 axis is involved in the anti-inflammatory effect of benznidazole. Front Immunol 2019;10:1267.  https://doi.org/10.3389/fimmu.2019.01267
  70. Stahl P, Schwarz RT, Debierre-Grockiego F, Meyer T. Trypanosoma cruzi parasites fight for control of the JAK-STAT pathway by disarming their host. JAK-STAT 2015;3:e1012964. 
  71. Ponce NE, Cano RC, Carrera-Silva EA, Lima AP, Gea S, Aoki MP. Toll-like receptor-2 and interleukin-6 mediate cardiomyocyte protection from apoptosis during Trypanosoma cruzi murine infection. Med Microbiol Immunol (Berl) 2012;201:145-155.  https://doi.org/10.1007/s00430-011-0216-z
  72. Cheng ZY, He TT, Gao XM, Zhao Y, Wang J. ZBTB transcription factors: key regulators of the development, differentiation and effector function of T cells. Front Immunol 2021;12:713294. 
  73. Gotthardt D, Trifinopoulos J, Sexl V, Putz EM. JAK/STAT cytokine signaling at the crossroad of NK cell development and maturation. Front Immunol 2019;10:2590. 
  74. Hershey CL, Fisher DE. Genomic analysis of the Microphthalmia locus and identification of the MITF-J/Mitf-J isoform. Gene 2005;347:73-82.  https://doi.org/10.1016/j.gene.2004.12.002
  75. Tshori S, Gilon D, Beeri R, Nechushtan H, Kaluzhny D, Pikarsky E, Razin E. Transcription factor MITF regulates cardiac growth and hypertrophy. J Clin Invest 2006;116:2673-2681.  https://doi.org/10.1172/JCI27643.
  76. Braun MU, Mochly-Rosen D. Opposing effects of delta- and zeta-protein kinase C isozymes on cardiac fibroblast proliferation: use of isozyme-selective inhibitors. J Mol Cell Cardiol 2003;35:895-903.  https://doi.org/10.1016/S0022-2828(03)00142-1
  77. Ferreira JC, Mochly-Rosen D, Boutjdir M. Regulation of cardiac excitability by protein kinase C isozymes. Front Biosci (Schol Ed) 2012;4:532-546.  https://doi.org/10.2741/s283
  78. Hinterseher I, Schworer CM, Lillvis JH, Stahl E, Erdman R, Gatalica Z, Tromp G, Kuivaniemi H. Immunohistochemical analysis of the natural killer cell cytotoxicity pathway in human abdominal aortic aneurysms. Int J Mol Sci 2015;16:11196-11212.  https://doi.org/10.3390/ijms160511196
  79. Ghansah TJ, Ager EC, Freeman-Junior P, Villalta F, Lima MF. Epidermal growth factor binds to a receptor on Trypanosoma cruzi amastigotes inducing signal transduction events and cell proliferation. J Eukaryot Microbiol 2002;49:383-390.