DOI QR코드

DOI QR Code

Low-Level Expression of CD138 Marks Naturally Arising Anergic B Cells

  • Sujin Lee (Department of Immunology, Sungkyunkwan University School of Medicine) ;
  • Jeong In Yang (Department of Immunology, Sungkyunkwan University School of Medicine) ;
  • Joo Hee Lee (Department of Immunology, Sungkyunkwan University School of Medicine) ;
  • Hyun Woo Lee (Department of Immunology, Sungkyunkwan University School of Medicine) ;
  • Tae Jin Kim (Department of Immunology, Sungkyunkwan University School of Medicine)
  • Received : 2022.08.30
  • Accepted : 2022.10.14
  • Published : 2022.12.31

Abstract

Autoreactive B cells are not entirely deleted, but some remain as immunocompetent or anergic B cells. Although the persistence of autoreactive B cells as anergic cells has been shown in transgenic mouse models with the expression of B cell receptor (BCR) reactive to engineered self-antigen, the characterization of naturally occurring anergic B cells is important to identify them and understand their contribution to immune regulation or autoimmune diseases. We report here that a low-level expression of CD138 in the splenic B cells marks naturally arising anergic B cells, not plasma cells. The CD138int B cells consisted of IgMlowIgDhigh follicular (FO) B cells and transitional 3 B cells in homeostatic conditions. The CD138int FO B cells showed an anergic gene expression profile shared with that of monoclonal anergic B cells expressing engineered BCRs and the gene expression profile was different from those of plasma cells, age-associated B cells, or germinal center B cells. The anergic state of the CD138int FO B cells was confirmed by attenuated Ca2+ response and failure to upregulate CD69 upon BCR engagement with anti-IgM, anti-IgD, anti-Igκ, or anti-IgG. The BCR repertoire of the CD138int FO B cells was distinct from that of the CD138- FO B cells and included some class-switched B cells with low-level somatic mutations. These findings demonstrate the presence of polyclonal anergic B cells in the normal mice that are characterized by low-level expression of CD138, IgM downregulation, reduced Ca2+ and CD69 responses upon BCR engagement, and distinct BCR repertoire.

Keywords

Acknowledgement

This research was supported by the Korea Medical Device Development Fund (grants KMDF_PR_20200901_0004 and NTIS 9991006677) from the Korean Government (the Ministry of Science and ICT, the Ministry of Trade, Industry and Energy, the Ministry of Health and Welfare, and the Ministry of Food and Drug Safety), the Korea Basic Science Institute (National Research Facilities and Equipment Center) grant (2020R1A6C101A191) of the Ministry of Education (Korea) and National Research Foundation of Korea, and the BK21 FOUR Program (Graduate School Innovation) of Sungkyunkwan University.

References

  1. Lee S, Ko Y, Kim TJ. Homeostasis and regulation of autoreactive B cells. Cell Mol Immunol 2020;17:561-569. https://doi.org/10.1038/s41423-020-0445-4
  2. Wardemann H, Yurasov S, Schaefer A, Young JW, Meffre E, Nussenzweig MC. Predominant autoantibody production by early human B cell precursors. Science 2003;301:1374-1377. https://doi.org/10.1126/science.1086907
  3. Liu Z, Davidson A. BAFF and selection of autoreactive B cells. Trends Immunol 2011;32:388-394. https://doi.org/10.1016/j.it.2011.06.004
  4. Shlomchik MJ. Sites and stages of autoreactive B cell activation and regulation. Immunity 2008;28:18-28. https://doi.org/10.1016/j.immuni.2007.12.004
  5. Gaudin E, Hao Y, Rosado MM, Chaby R, Girard R, Freitas AA. Positive selection of B cells expressing low densities of self-reactive BCRs. J Exp Med 2004;199:843-853. https://doi.org/10.1084/jem.20030955
  6. Nemazee D. Mechanisms of central tolerance for B cells. Nat Rev Immunol 2017;17:281-294. https://doi.org/10.1038/nri.2017.19
  7. Meffre E, Wardemann H. B-cell tolerance checkpoints in health and autoimmunity. Curr Opin Immunol 2008;20:632-638. https://doi.org/10.1016/j.ceb.2008.09.002
  8. Grimaldi CM, Hicks R, Diamond B. B cell selection and susceptibility to autoimmunity. J Immunol 2005;174:1775-1781. https://doi.org/10.4049/jimmunol.174.4.1775
  9. Pelanda R, Torres RM. Central B-cell tolerance: where selection begins. Cold Spring Harb Perspect Biol 2012;4:a007146.
  10. Schmidt KN, Cyster JG. Follicular exclusion and rapid elimination of hen egg lysozyme autoantigen-binding B cells are dependent on competitor B cells, but not on T cells. J Immunol 1999;162:284-291. https://doi.org/10.4049/jimmunol.162.1.284
  11. Turner M, Gulbranson-Judge A, Quinn ME, Walters AE, MacLennan IC, Tybulewicz VL. Syk tyrosine kinase is required for the positive selection of immature B cells into the recirculating B cell pool. J Exp Med 1997;186:2013-2021. https://doi.org/10.1084/jem.186.12.2013
  12. Tan C, Noviski M, Huizar J, Zikherman J. Self-reactivity on a spectrum: a sliding scale of peripheral B cell tolerance. Immunol Rev 2019;292:37-60. https://doi.org/10.1111/imr.12818
  13. Zikherman J, Parameswaran R, Weiss A. Endogenous antigen tunes the responsiveness of naive B cells but not T cells. Nature 2012;489:160-164. https://doi.org/10.1038/nature11311
  14. Goodnow CC, Crosbie J, Adelstein S, Lavoie TB, Smith-Gill SJ, Brink RA, Pritchard-Briscoe H, Wotherspoon JS, Loblay RH, Raphael K, et al. Altered immunoglobulin expression and functional silencing of self-reactive B lymphocytes in transgenic mice. Nature 1988;334:676-682. https://doi.org/10.1038/334676a0
  15. Gauld SB, Benschop RJ, Merrell KT, Cambier JC. Maintenance of B cell anergy requires constant antigen receptor occupancy and signaling. Nat Immunol 2005;6:1160-1167. https://doi.org/10.1038/ni1256
  16. Sabouri Z, Perotti S, Spierings E, Humburg P, Yabas M, Bergmann H, Horikawa K, Roots C, Lambe S, Young C, et al. IgD attenuates the IgM-induced anergy response in transitional and mature B cells. Nat Commun 2016;7:13381.
  17. Merrell KT, Benschop RJ, Gauld SB, Aviszus K, Decote-Ricardo D, Wysocki LJ, Cambier JC. Identification of anergic B cells within a wild-type repertoire. Immunity 2006;25:953-962. https://doi.org/10.1016/j.immuni.2006.10.017
  18. Duty JA, Szodoray P, Zheng NY, Koelsch KA, Zhang Q, Swiatkowski M, Mathias M, Garman L, Helms C, Nakken B, et al. Functional anergy in a subpopulation of naive B cells from healthy humans that express autoreactive immunoglobulin receptors. J Exp Med 2009;206:139-151. https://doi.org/10.1084/jem.20080611
  19. Chernova I, Jones DD, Wilmore JR, Bortnick A, Yucel M, Hershberg U, Allman D. Lasting antibody responses are mediated by a combination of newly formed and established bone marrow plasma cells drawn from clonally distinct precursors. J Immunol 2014;193:4971-4979. https://doi.org/10.4049/jimmunol.1401264
  20. Wilmore JR, Jones DD, Allman D. Protocol for improved resolution of plasma cell subpopulations by flow cytometry. Eur J Immunol 2017;47:1386-1388. https://doi.org/10.1002/eji.201746944
  21. Boldison J, Da Rosa LC, Buckingham L, Davies J, Wen L, Wong FS. Phenotypically distinct anti-insulin B cells repopulate pancreatic islets after anti-CD20 treatment in NOD mice. Diabetologia 2019;62:2052-2065. https://doi.org/10.1007/s00125-019-04974-y
  22. Lee JG, Moon H, Park C, Shin SH, Kang K, Kim TJ. Reversible expression of CD138 on mature follicular B cells is downregulated by IL-4. Immunol Lett 2013;156:38-45. https://doi.org/10.1016/j.imlet.2013.09.004
  23. Mason DY, Jones M, Goodnow CC. Development and follicular localization of tolerant B lymphocytes in lysozyme/anti-lysozyme IgM/IgD transgenic mice. Int Immunol 1992;4:163-175. https://doi.org/10.1093/intimm/4.2.163
  24. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 2005;102:15545-15550. https://doi.org/10.1073/pnas.0506580102
  25. Briney BS, Willis JR, McKinney BA, Crowe JE Jr. High-throughput antibody sequencing reveals genetic evidence of global regulation of the naive and memory repertoires that extends across individuals. Genes Immun 2012;13:469-473. https://doi.org/10.1038/gene.2012.20
  26. Chaudhary N, Wesemann DR. Analyzing immunoglobulin repertoires. Front Immunol 2018;9:462.
  27. DeWolf S, Grinshpun B, Savage T, Lau SP, Obradovic A, Shonts B, Yang S, Morris H, Zuber J, Winchester R. Quantifying size and diversity of the human T cell alloresponse. JCI Insight 2018;3:e121256.
  28. Venturi V, Kedzierska K, Tanaka MM, Turner SJ, Doherty PC, Davenport MP. Method for assessing the similarity between subsets of the T cell receptor repertoire. J Immunol Methods 2008;329:67-80. https://doi.org/10.1016/j.jim.2007.09.016
  29. Fossati V, Kumar R, Snoeck HW. Progenitor cell origin plays a role in fate choices of mature B cells. J Immunol 2010;184:1251-1260. https://doi.org/10.4049/jimmunol.0901922
  30. Glynne R, Ghandour G, Rayner J, Mack DH, Goodnow CC. B-lymphocyte quiescence, tolerance and activation as viewed by global gene expression profiling on microarrays. Immunol Rev 2000;176:216-246. https://doi.org/10.1034/j.1600-065X.2000.00614.x
  31. Klonowski KD, Primiano LL, Monestier M. Atypical VH-D-JH rearrangements in newborn autoimmune MRL mice. J Immunol 1999;162:1566-1572. https://doi.org/10.4049/jimmunol.162.3.1566
  32. Wijdenes J, Dore JM, Clement C, Vermot-Desroches C. CD138. J Biol Regul Homeost Agents 2002;16:152-155.
  33. Moreaux J, Sprynski AC, Dillon SR, Mahtouk K, Jourdan M, Ythier A, Moine P, Robert N, Jourdan E, Rossi JF, et al. APRIL and TACI interact with syndecan-1 on the surface of multiple myeloma cells to form an essential survival loop. Eur J Haematol 2009;83:119-129. https://doi.org/10.1111/j.1600-0609.2009.01262.x
  34. Culton DA, O'Conner BP, Conway KL, Diz R, Rutan J, Vilen BJ, Clarke SH. Early preplasma cells define a tolerance checkpoint for autoreactive B cells. J Immunol 2006;176:790-802. https://doi.org/10.4049/jimmunol.176.2.790
  35. Huizar J, Tan C, Noviski M, Mueller JL, Zikherman J. Nur77 is upregulated in B-1a cells by chronic self-antigen stimulation and limits generation of natural IgM plasma cells. Immunohorizons 2017;1:188-197. https://doi.org/10.4049/immunohorizons.1700048
  36. Hayakawa K, Formica AM, Zhou Y, Ichikawa D, Asano M, Li YS, Shinton SA, Brill-Dashoff J, Nunez G, Hardy RR. NLR Nod1 signaling promotes survival of BCR-engaged mature B cells through up-regulated Nod1 as a positive outcome. J Exp Med 2017;214:3067-3083. https://doi.org/10.1084/jem.20170497
  37. Hobeika E, Maity PC, Jumaa H. Control of B cell responsiveness by isotype and structural elements of the antigen receptor. Trends Immunol 2016;37:310-320. https://doi.org/10.1016/j.it.2016.03.004
  38. ubelhart R, Hug E, Bach MP, Wossning T, Duhren-von Minden M, Horn AH, Tsiantoulas D, Kometani K, Kurosaki T, Binder CJ, et al. Responsiveness of B cells is regulated by the hinge region of IgD. Nat Immunol 2015;16:534-543. https://doi.org/10.1038/ni.3141
  39. Noviski M, Zikherman J. Control of autoreactive B cells by IgM and IgD B cell receptors: maintaining a fine balance. Curr Opin Immunol 2018;55:67-74. https://doi.org/10.1016/j.coi.2018.09.015
  40. Noviski M, Mueller JL, Satterthwaite A, Garrett-Sinha LA, Brombacher F, Zikherman J. IgM and IgD B cell receptors differentially respond to endogenous antigens and control B cell fate. eLife 2018;7:e35074.
  41. Cancro MP. Signalling crosstalk in B cells: managing worth and need. Nat Rev Immunol 2009;9:657-661. https://doi.org/10.1038/nri2621
  42. Monroe JG. ITAM-mediated tonic signalling through pre-BCR and BCR complexes. Nat Rev Immunol 2006;6:283-294. https://doi.org/10.1038/nri1808
  43. Okkenhaug K. Signaling by the phosphoinositide 3-kinase family in immune cells. Annu Rev Immunol 2013;31:675-704. https://doi.org/10.1146/annurev-immunol-032712-095946
  44. Srinivasan L, Sasaki Y, Calado DP, Zhang B, Paik JH, DePinho RA, Kutok JL, Kearney JF, Otipoby KL, Rajewsky K. PI3 kinase signals BCR-dependent mature B cell survival. Cell 2009;139:573-586. https://doi.org/10.1016/j.cell.2009.08.041
  45. Batten M, Groom J, Cachero TG, Qian F, Schneider P, Tschopp J, Browning JL, Mackay F. BAFF mediates survival of peripheral immature B lymphocytes. J Exp Med 2000;192:1453-1466. https://doi.org/10.1084/jem.192.10.1453
  46. Tan C, Hiwa R, Mueller JL, Vykunta V, Hibiya K, Noviski M, Huizar J, Brooks JF, Garcia J, Heyn C, et al. NR4A nuclear receptors restrain B cell responses to antigen when second signals are absent or limiting. Nat Immunol 2020;21:1267-1279. https://doi.org/10.1038/s41590-020-0765-7
  47. Kim EE, Shekhar A, Lu J, Lin X, Liu FY, Zhang J, Delmar M, Fishman GI. PCP4 regulates Purkinje cell excitability and cardiac rhythmicity. J Clin Invest 2014;124:5027-5036. https://doi.org/10.1172/JCI77495
  48. Steach HR, DeBuysscher BL, Schwartz A, Boonyaratanakornkit J, Baker ML, Tooley MR, Pease NA, Taylor JJ. Cross-reactivity with self-antigen tunes the functional potential of naive B cells specific for foreign antigens. J Immunol 2020;204:498-509. https://doi.org/10.4049/jimmunol.1900799
  49. Melamed D, Benschop RJ, Cambier JC, Nemazee D. Developmental regulation of B lymphocyte immune tolerance compartmentalizes clonal selection from receptor selection. Cell 1998;92:173-182. https://doi.org/10.1016/S0092-8674(00)80912-5
  50. Mandik-Nayak L, Bui A, Noorchashm H, Eaton A, Erikson J. Regulation of anti-double-stranded DNA B cells in nonautoimmune mice: localization to the T-B interface of the splenic follicle. J Exp Med 1997;186:1257-1267. https://doi.org/10.1084/jem.186.8.1257
  51. Cyster JG, Healy JI, Kishihara K, Mak TW, Thomas ML, Goodnow CC. Regulation of B-lymphocyte negative and positive selection by tyrosine phosphatase CD45. Nature 1996;381:325-328. https://doi.org/10.1038/381325a0
  52. Basten A, Silveira PA. B-cell tolerance: mechanisms and implications. Curr Opin Immunol 2010;22:566-574. https://doi.org/10.1016/j.coi.2010.08.001
  53. Dang VD, Mohr E, Szelinski F, Le TA, Ritter J, Hinnenthal T, Stefanski AL, Schrezenmeier E, Ocvirk S, Hipfl C, et al. CD39 and CD326 are bona fide markers of murine and human plasma cells and identify a bone marrow specific plasma cell subpopulation in lupus. Front Immunol 2022;13:873217.
  54. Panda S, Ding JL. Natural antibodies bridge innate and adaptive immunity. J Immunol 2015;194:13-20. https://doi.org/10.4049/jimmunol.1400844
  55. Panda S, Zhang J, Tan NS, Ho B, Ding JL. Natural IgG antibodies provide innate protection against ficolin-opsonized bacteria. EMBO J 2013;32:2905-2919. https://doi.org/10.1038/emboj.2013.199
  56. Aung KM, Sjostrom AE, von Pawel-Rammingen U, Riesbeck K, Uhlin BE, Wai SN. Naturally occurring IgG antibodies provide innate protection against vibrio cholerae bacteremia by recognition of the outer membrane protein U. J Innate Immun 2016;8:269-283. https://doi.org/10.1159/000443646
  57. Chappert P, Schwartz RH. Induction of T cell anergy: integration of environmental cues and infectious tolerance. Curr Opin Immunol 2010;22:552-559. https://doi.org/10.1016/j.coi.2010.08.005
  58. Kassambara A, Reme T, Jourdan M, Fest T, Hose D, Tarte K, Klein B. GenomicScape: an easy-to-use web tool for gene expression data analysis. Application to investigate the molecular events in the differentiation of B cells into plasma cells. PLOS Comput Biol 2015;11:e1004077.
  59. Masle-Farquhar E, Peters TJ, Miosge LA, Parish IA, Weigel C, Oakes CC, Reed JH, Goodnow CC. Uncontrolled CD21low age-associated and B1 B cell accumulation caused by failure of an EGR2/3 tolerance checkpoint. Cell Reports 2022;38:110259.
  60. Srivastava B, Quinn WJ 3rd, Hazard K, Erikson J, Allman D. Characterization of marginal zone B cell precursors. J Exp Med 2005;202:1225-1234. https://doi.org/10.1084/jem.20051038