DOI QR코드

DOI QR Code

Integration and Reanalysis of Four RNA-Seq Datasets Including BALF, Nasopharyngeal Swabs, Lung Biopsy, and Mouse Models Reveals Common Immune Features of COVID-19

  • Rudi Alberts (Department of Microbiology and Immunology, NUSMED Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore) ;
  • Sze Chun Chan (Department of Microbiology and Immunology, NUSMED Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore) ;
  • Qian-Fang Meng (Shengzhen Bay Laboratory) ;
  • Shan He (School of Biological Sciences, Nanyang Technological University) ;
  • Lang Rao (Shengzhen Bay Laboratory) ;
  • Xindong Liu (Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University(Army Medical University)) ;
  • Yongliang Zhang (Department of Microbiology and Immunology, NUSMED Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore)
  • Received : 2022.02.07
  • Accepted : 2022.04.27
  • Published : 2022.06.30

Abstract

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndromecoronavirus-2 (SARS-CoV-2), has spread over the world causing a pandemic which is still ongoing since its emergence in late 2019. A great amount of effort has been devoted to understanding the pathogenesis of COVID-19 with the hope of developing better therapeutic strategies. Transcriptome analysis using technologies such as RNA sequencing became a commonly used approach in study of host immune responses to SARS-CoV-2. Although substantial amount of information can be gathered from transcriptome analysis, different analysis tools used in these studies may lead to conclusions that differ dramatically from each other. Here, we re-analyzed four RNA-sequencing datasets of COVID-19 samples including human bronchoalveolar lavage fluid, nasopharyngeal swabs, lung biopsy and hACE2 transgenic mice using the same standardized method. The results showed that common features of COVID-19 include upregulation of chemokines including CCL2, CXCL1, and CXCL10, inflammatory cytokine IL-1β and alarmin S100A8/S100A9, which are associated with dysregulated innate immunity marked by abundant neutrophil and mast cell accumulation. Downregulation of chemokine receptor genes that are associated with impaired adaptive immunity such as lymphopenia is another common feather of COVID-19 observed. In addition, a few interferon-stimulated genes but no type I IFN genes were identified to be enriched in COVID-19 samples compared to their respective control in these datasets. These features are in line with results from single-cell RNA sequencing studies in the field. Therefore, our re-analysis of the RNA-seq datasets revealed common features of dysregulated immune responses to SARS-CoV-2 and shed light to the pathogenesis of COVID-19.

Keywords

Acknowledgement

This work was supported by grants from the Singapore National Medical Research Council (NMRC/OFIRG/0059/2017 to Y. Z.) and the National University Health System (NUHSRO/2020/113/T1/Seed-Mar/09 to Y. Z.).

References

  1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497-506. https://doi.org/10.1016/S0140-6736(20)30183-5
  2. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020;395:1054-1062. https://doi.org/10.1016/S0140-6736(20)30566-3
  3. Silva TF, Tomiotto-Pellissier F, Sanfelice RA, Goncalves MD, da Silva Bortoleti BT, Detoni MB, Rodrigues AC, Carloto AC, Concato VM, Siqueira ED, et al. A 21st century evil: immunopathology and new therapies of COVID-19. Front Immunol 2020;11:562264.
  4. Lucas C, Wong P, Klein J, Castro TB, Silva J, Sundaram M, Ellingson MK, Mao T, Oh JE, Israelow B, et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature 2020;584:463-469. https://doi.org/10.1038/s41586-020-2588-y
  5. Arunachalam PS, Wimmers F, Mok CK, Perera RA, Scott M, Hagan T, Sigal N, Feng Y, Bristow L, Tak-Yin Tsang O, et al. Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans. Science 2020;369:1210-1220. https://doi.org/10.1126/science.abc6261
  6. Giamarellos-Bourboulis EJ, Netea MG, Rovina N, Akinosoglou K, Antoniadou A, Antonakos N, Damoraki G, Gkavogianni T, Adami ME, Katsaounou P, et al. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe 2020;27:992-1000.e3. https://doi.org/10.1016/j.chom.2020.04.009
  7. Lieberman NA, Peddu V, Xie H, Shrestha L, Huang ML, Mears MC, Cajimat MN, Bente DA, Shi PY, Bovier F, et al. In vivo antiviral host transcriptional response to SARS-CoV-2 by viral load, sex, and age. PLoS Biol 2020;18:e3000849.
  8. Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Moller R, Jordan TX, Oishi K, Panis M, Sachs D, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell 2020;181:1036-1045.e9. https://doi.org/10.1016/j.cell.2020.04.026
  9. Zhou Z, Ren L, Zhang L, Zhong J, Xiao Y, Jia Z, Guo L, Yang J, Wang C, Jiang S, et al. Heightened innate immune responses in the respiratory tract of COVID-19 patients. Cell Host Microbe 2020;27:883-890.e2. https://doi.org/10.1016/j.chom.2020.04.017
  10. Israelow B, Song E, Mao T, Lu P, Meir A, Liu F, Alfajaro MM, Wei J, Dong H, Homer RJ, et al. Mouse model of SARS-CoV-2 reveals inflammatory role of type I interferon signaling. J Exp Med 2020;217:e20201241.
  11. Ewels PA, Peltzer A, Fillinger S, Patel H, Alneberg J, Wilm A, Garcia MU, Di Tommaso P, Nahnsen S. The nf-core framework for community-curated bioinformatics pipelines. Nat Biotechnol 2020;38:276-278. https://doi.org/10.1038/s41587-020-0439-x
  12. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013;29:15-21. https://doi.org/10.1093/bioinformatics/bts635
  13. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014;30:923-930. https://doi.org/10.1093/bioinformatics/btt656
  14. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014;15:550.
  15. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 2012;16:284-287. https://doi.org/10.1089/omi.2011.0118
  16. Sun J, Nishiyama T, Shimizu K, Kadota K. TCC: an R package for comparing tag count data with robust normalization strategies. BMC Bioinformatics 2013;14:219.
  17. Hadjadj J, Yatim N, Barnabei L, Corneau A, Boussier J, Smith N, Pere H, Charbit B, Bondet V, Chenevier-Gobeaux C, et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science 2020;369:718-724. https://doi.org/10.1126/science.abc6027
  18. McNab F, Mayer-Barber K, Sher A, Wack A, O'Garra A. Type I interferons in infectious disease. Nat Rev Immunol 2015;15:87-103. https://doi.org/10.1038/nri3787
  19. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, Hoang CD, Diehn M, Alizadeh AA. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 2015;12:453-457. https://doi.org/10.1038/nmeth.3337
  20. Tacchi L, Musharrafieh R, Larragoite ET, Crossey K, Erhardt EB, Martin SA, LaPatra SE, Salinas I. Nasal immunity is an ancient arm of the mucosal immune system of vertebrates. Nat Commun 2014;5:5205.
  21. Ardain A, Marakalala MJ, Leslie A. Tissue-resident innate immunity in the lung. Immunology 2020;159:245-256. https://doi.org/10.1111/imm.13143
  22. Shi Y, Wang Y, Shao C, Huang J, Gan J, Huang X, Bucci E, Piacentini M, Ippolito G, Melino G. COVID-19 infection: the perspectives on immune responses. Cell Death Differ 2020;27:1451-1454. https://doi.org/10.1038/s41418-020-0530-3
  23. Sinha S, Rosin NL, Arora R, Labit E, Jaffer A, Cao L, Farias R, Nguyen AP, de Almeida LG, Dufour A, et al. Dexamethasone modulates immature neutrophils and interferon programming in severe COVID-19. Nat Med 2022;28:201-211. https://doi.org/10.1038/s41591-021-01576-3
  24. Banerjee AK, Blanco MR, Bruce EA, Honson DD, Chen LM, Chow A, Bhat P, Ollikainen N, Quinodoz SA, Loney C, et al. SARS-CoV-2 disrupts splicing, translation, and protein trafficking to suppress host defenses. Cell 2020;183:1325-1339.e21. https://doi.org/10.1016/j.cell.2020.10.004
  25. Schubert K, Karousis ED, Jomaa A, Scaiola A, Echeverria B, Gurzeler LA, Leibundgut M, Thiel V, Muhlemann O, Ban N. SARS-CoV-2 Nsp1 binds the ribosomal mRNA channel to inhibit translation. Nat Struct Mol Biol 2020;27:959-966. https://doi.org/10.1038/s41594-020-0511-8
  26. Wang JY, Zhang W, Roehrl MW, Roehrl VB, Roehrl MH. An autoantigen profile of human A549 lung cells reveals viral and host etiologic molecular attributes of autoimmunity in COVID-19. J Autoimmun 2021;120:102644.
  27. Shibabaw T. Inflammatory cytokine: IL-17A signaling pathway in patients present with COVID-19 and current treatment strategy. J Inflamm Res 2020;13:673-680. https://doi.org/10.2147/JIR.S278335
  28. Maione F, Casillo GM, Raucci F, Salvatore C, Ambrosini G, Costa L, Scarpa R, Caso F, Bucci M. Interleukin-17A (IL-17A): a silent amplifier of COVID-19. Biomed Pharmacother 2021;142:111980.
  29. Del Valle DM, Kim-Schulze S, Huang HH, Beckmann ND, Nirenberg S, Wang B, Lavin Y, Swartz TH, Madduri D, Stock A, et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat Med 2020;26:1636-1643. https://doi.org/10.1038/s41591-020-1051-9
  30. Mortaz E, Tabarsi P, Jamaati H, Dalil Roofchayee N, Dezfuli NK, Hashemian SM, Moniri A, Marjani M, Malekmohammad M, Mansouri D, et al. Increased serum levels of soluble TNF-α receptor is associated with ICU mortality in COVID-19 patients. Front Immunol 2021;12:592727.
  31. Merad M, Martin JC. Author correction: pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol 2020;20:448.
  32. Kox M, Waalders NJ, Kooistra EJ, Gerretsen J, Pickkers P. Cytokine levels in critically ill patients with COVID-19 and other conditions. JAMA 2020;324:1565.
  33. Shah A. Novel coronavirus-induced NLRP3 inflammasome activation: a potential drug target in the treatment of COVID-19. Front Immunol 2020;11:1021.
  34. Karki R, Sharma BR, Tuladhar S, Williams EP, Zalduondo L, Samir P, Zheng M, Sundaram B, Banoth B, Malireddi RK, et al. Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell 2021;184:149-168.e17. https://doi.org/10.1016/j.cell.2020.11.025
  35. Burgstaller G, Oehrle B, Gerckens M, White ES, Schiller HB, Eickelberg O. The instructive extracellular matrix of the lung: basic composition and alterations in chronic lung disease. Eur Respir J 2017;50:1601805.
  36. Leng L, Cao R, Ma J, Mou D, Zhu Y, Li W, Lv L, Gao D, Zhang S, Gong F, et al. Pathological features of COVID-19-associated lung injury: a preliminary proteomics report based on clinical samples. Signal Transduct Target Ther 2020;5:240.
  37. Xie Y, Xu E, Bowe B, Al-Aly Z. Long-term cardiovascular outcomes of COVID-19. Nat Med 2022;28:583-590. https://doi.org/10.1038/s41591-022-01689-3
  38. Sahranavard M, Akhavan Rezayat A, Zamiri Bidary M, Omranzadeh A, Rohani F, Hamidi Farahani R, Hazrati E, Mousavi SH, Afshar Ardalan M, Soleiman-Meigooni S, et al. Cardiac complications in COVID-19: a systematic review and meta-analysis. Arch Iran Med 2021;24:152-163. https://doi.org/10.34172/aim.2021.24
  39. Ramadan MS, Bertolino L, Marrazzo T, Florio MT, Durante-Mangoni E, Durante-Mangoni E, Iossa D, Bertolino L, Ursi MP, D'Amico F, et al. Cardiac complications during the active phase of COVID-19: review of the current evidence. Intern Emerg Med 2021;16:2051-2061. https://doi.org/10.1007/s11739-021-02763-3
  40. Delorey TM, Ziegler CG, Heimberg G, Normand R, Yang Y, Segerstolpe A, Abbondanza D, Fleming SJ, Subramanian A, Montoro DT, et al. COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. Nature 2021;595:107-113. https://doi.org/10.1038/s41586-021-03570-8
  41. Ren X, Wen W, Fan X, Hou W, Su B, Cai P, Li J, Liu Y, Tang F, Zhang F, et al. COVID-19 immune features revealed by a large-scale single-cell transcriptome atlas. Cell 2021;184:1895-1913.e19. https://doi.org/10.1016/j.cell.2021.01.053
  42. Grant RA, Morales-Nebreda L, Markov NS, Swaminathan S, Querrey M, Guzman ER, Abbott DA, Donnelly HK, Donayre A, Goldberg IA, et al. Circuits between infected macrophages and T cells in SARS-CoV-2 pneumonia. Nature 2021;590:635-641. https://doi.org/10.1038/s41586-020-03148-w
  43. Tokunaga R, Zhang W, Naseem M, Puccini A, Berger MD, Soni S, McSkane M, Baba H, Lenz HJ. CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation - a target for novel cancer therapy. Cancer Treat Rev 2018;63:40-47. https://doi.org/10.1016/j.ctrv.2017.11.007
  44. Metzemaekers M, Vanheule V, Janssens R, Struyf S, Proost P. Overview of the mechanisms that may contribute to the non-redundant activities of interferon-inducible CXC chemokine receptor 3 ligands. Front Immunol 2018;8:1970.
  45. Ichikawa A, Kuba K, Morita M, Chida S, Tezuka H, Hara H, Sasaki T, Ohteki T, Ranieri VM, dos Santos CC, et al. CXCL10-CXCR3 enhances the development of neutrophil-mediated fulminant lung injury of viral and nonviral origin. Am J Respir Crit Care Med 2013;187:65-77. https://doi.org/10.1164/rccm.201203-0508OC
  46. Saichi M, Ladjemi MZ, Korniotis S, Rousseau C, Ait Hamou Z, Massenet-Regad L, Amblard E, Noel F, Marie Y, Bouteiller D, et al. Single-cell RNA sequencing of blood antigen-presenting cells in severe COVID-19 reveals multi-process defects in antiviral immunity. Nat Cell Biol 2021;23:538-551. https://doi.org/10.1038/s41556-021-00681-2
  47. Guo Q, Zhao Y, Li J, Liu J, Yang X, Guo X, Kuang M, Xia H, Zhang Z, Cao L, et al. Induction of alarmin S100A8/A9 mediates activation of aberrant neutrophils in the pathogenesis of COVID-19. Cell Host Microbe 2021;29:222-235.e4. https://doi.org/10.1016/j.chom.2020.12.016
  48. Lei X, Dong X, Ma R, Wang W, Xiao X, Tian Z, Wang C, Wang Y, Li L, Ren L, et al. Activation and evasion of type I interferon responses by SARS-CoV-2. Nat Commun 2020;11:3810.
  49. Yuen CK, Lam JY, Wong WM, Mak LF, Wang X, Chu H, Cai JP, Jin DY, To KK, Chan JF, et al. SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon antagonists. Emerg Microbes Infect 2020;9:1418-1428. https://doi.org/10.1080/22221751.2020.1780953
  50. Shin D, Mukherjee R, Grewe D, Bojkova D, Baek K, Bhattacharya A, Schulz L, Widera M, Mehdipour AR, Tascher G, et al. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature 2020;587:657-662. https://doi.org/10.1038/s41586-020-2601-5
  51. Carvalho T. Interferon linked to COVID-19 severity. Nat Med 2020;26:1806.
  52. Dinarello CA. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol Rev 2018;281:8-27. https://doi.org/10.1111/imr.12621
  53. Lipsky PE, Thompson PA, Rosenwasser LJ, Dinarello CA. The role of interleukin 1 in human B cell activation: inhibition of B cell proliferation and the generation of immunoglobulin-secreting cells by an antibody against human leukocytic pyrogen. J Immunol 1983;130:2708-2714. https://doi.org/10.4049/jimmunol.130.6.2708
  54. Schenk M, Fabri M, Krutzik SR, Lee DJ, Vu DM, Sieling PA, Montoya D, Liu PT, Modlin RL. Interleukin-1β triggers the differentiation of macrophages with enhanced capacity to present mycobacterial antigen to T cells. Immunology 2014;141:174-180. https://doi.org/10.1111/imm.12167
  55. Ben-Sasson SZ, Hu-Li J, Quiel J, Cauchetaux S, Ratner M, Shapira I, Dinarello CA, Paul WE. IL-1 acts directly on CD4 T cells to enhance their antigen-driven expansion and differentiation. Proc Natl Acad Sci U S A 2009;106:7119-7124. https://doi.org/10.1073/pnas.0902745106
  56. Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning L, Chen L, Li M, Liu Y, Wang G, et al. Reduction and functional exhaustion of t cells in patients with coronavirus disease 2019 (COVID-19). Front Immunol 2020;11:827.
  57. Rider P, Carmi Y, Guttman O, Braiman A, Cohen I, Voronov E, White MR, Dinarello CA, Apte RN. IL-1α and IL-1β recruit different myeloid cells and promote different stages of sterile inflammation. J Immunol 2011;187:4835-4843. https://doi.org/10.4049/jimmunol.1102048
  58. Biondo C, Mancuso G, Midiri A, Signorino G, Domina M, Lanza Cariccio V, Mohammadi N, Venza M, Venza I, Teti G, et al. The interleukin-1β/CXCL1/2/neutrophil axis mediates host protection against group B streptococcal infection. Infect Immun 2014;82:4508-4517. https://doi.org/10.1128/IAI.02104-14
  59. Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 2013;13:159-175. https://doi.org/10.1038/nri3399
  60. Laskin DL, Sunil VR, Gardner CR, Laskin JD. Macrophages and tissue injury: agents of defense or destruction? Annu Rev Pharmacol Toxicol 2011;51:267-288. https://doi.org/10.1146/annurev.pharmtox.010909.105812
  61. Bruehl RE, Moore KL, Lorant DE, Borregaard N, Zimmerman GA, McEver RP, Bainton DF. Leukocyte activation induces surface redistribution of P-selectin glycoprotein ligand-1. J Leukoc Biol 1997;61:489-499. https://doi.org/10.1002/jlb.61.4.489
  62. Buscher K, Riese SB, Shakibaei M, Reich C, Dernedde J, Tauber R, Ley K. The transmembrane domains of L-selectin and CD44 regulate receptor cell surface positioning and leukocyte adhesion under flow. J Biol Chem 2010;285:13490-13497. https://doi.org/10.1074/jbc.M110.102640
  63. Laforge M, Elbim C, Frere C, Hemadi M, Massaad C, Nuss P, Benoliel JJ, Becker C. Tissue damage from neutrophil-induced oxidative stress in COVID-19. Nat Rev Immunol 2020;20:515-516. https://doi.org/10.1038/s41577-020-0407-1
  64. Cauchois R, Koubi M, Delarbre D, Manet C, Carvelli J, Blasco VB, Jean R, Fouche L, Bornet C, Pauly V, et al. Early IL-1 receptor blockade in severe inflammatory respiratory failure complicating COVID-19. Proc Natl Acad Sci U S A 2020;117:18951-18953. https://doi.org/10.1073/pnas.2009017117
  65. Cavalli G, De Luca G, Campochiaro C, Della-Torre E, Ripa M, Canetti D, Oltolini C, Castiglioni B, Tassan Din C, Boffini N, et al. Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study. Lancet Rheumatol 2020;2:e325-e331. https://doi.org/10.1016/S2665-9913(20)30127-2
  66. Silvin A, Chapuis N, Dunsmore G, Goubet AG, Dubuisson A, Derosa L, Almire C, Henon C, Kosmider O, Droin N, et al. Elevated calprotectin and abnormal myeloid cell subsets discriminate severe from mild COVID-19. Cell 2020;182:1401-1418.e18. https://doi.org/10.1016/j.cell.2020.08.002
  67. Shi H, Zuo Y, Yalavarthi S, Gockman K, Zuo M, Madison JA, Blair C, Woodward W, Lezak SP, Lugogo NL, et al. Neutrophil calprotectin identifies severe pulmonary disease in COVID-19. J Leukoc Biol 2021;109:67-72. https://doi.org/10.1002/JLB.3COVCRA0720-359R
  68. Wang S, Song R, Wang Z, Jing Z, Wang S, Ma J. S100A8/A9 in inflammation. Front Immunol 2018;9:1298.
  69. Gebhardt C, Nemeth J, Angel P, Hess J. S100A8 and S100A9 in inflammation and cancer. Biochem Pharmacol 2006;72:1622-1631. https://doi.org/10.1016/j.bcp.2006.05.017
  70. Meijer B, Gearry RB, Day AS. The role of S100A12 as a systemic marker of inflammation. Int J Inflamm 2012;2012:907078.
  71. Yang Z, Yan WX, Cai H, Tedla N, Armishaw C, Di Girolamo N, Wang HW, Hampartzoumian T, Simpson JL, Gibson PG, et al. S100A12 provokes mast cell activation: a potential amplification pathway in asthma and innate immunity. J Allergy Clin Immunol 2007;119:106-114. https://doi.org/10.1016/j.jaci.2006.08.021
  72. Galli SJ, Gaudenzio N, Tsai M. Mast cells in inflammation and disease: recent progress and ongoing concerns. Annu Rev Immunol 2020;38:49-77. https://doi.org/10.1146/annurev-immunol-071719-094903
  73. Conti P, Pregliasco FE, Bellomo RG, Gallenga CE, Caraffa A, Kritas SK, Lauritano D, Ronconi G. Mast cell cytokines IL-1, IL-33, and IL-36 mediate skin inflammation in psoriasis: a novel therapeutic approach with the anti-inflammatory cytokines IL-37, IL-38, and IL-1Ra. Int J Mol Sci 2021;22:8076.
  74. Nigrovic PA, Lee DM. Synovial mast cells: role in acute and chronic arthritis. Immunol Rev 2007;217:19-37. https://doi.org/10.1111/j.1600-065X.2007.00506.x
  75. Ramos L, Pena G, Cai B, Deitch EA, Ulloa L. Mast cell stabilization improves survival by preventing apoptosis in sepsis. J Immunol 2010;185:709-716. https://doi.org/10.4049/jimmunol.1000273
  76. Freedberg DE, Conigliaro J, Wang TC, Tracey KJ, Callahan MV, Abrams JA, Sobieszczyk ME, Markowitz DD, Gupta A, O'Donnell MR, et al. Famotidine use is associated with improved clinical outcomes in hospitalized COVID-19 patients: a propensity score matched retrospective cohort study. Gastroenterology 2020;159:1129-1131.e3. https://doi.org/10.1053/j.gastro.2020.05.053
  77. Mura C, Preissner S, Nahles S, Heiland M, Bourne PE, Preissner R. Real-world evidence for improved outcomes with histamine antagonists and aspirin in 22,560 COVID-19 patients. Signal Transduct Target Ther 2021;6:267.
  78. Chinen T, Kannan AK, Levine AG, Fan X, Klein U, Zheng Y, Gasteiger G, Feng Y, Fontenot JD, Rudensky AY. An essential role for the IL-2 receptor in Treg cell function. Nat Immunol 2016;17:1322-1333. https://doi.org/10.1038/ni.3540
  79. Fabbi M, Carbotti G, Ferrini S. Dual roles of IL-27 in cancer biology and immunotherapy. Mediators Inflamm 2017;2017:3958069.
  80. Kourko O, Seaver K, Odoardi N, Basta S, Gee K. IL-27, IL-30, and IL-35: a cytokine triumvirate in cancer. Front Oncol 2019;9:969.