DOI QR코드

DOI QR Code

Paramyrothecium eichhorniae sp. nov., Causing Leaf Blight Disease of Water Hyacinth from Thailand

  • Pinruan, Umpawa (National Science and Technology Development Agency, Plant Microbe Interaction Research Team (APMT), Integrative Crop Biotechnology and Management Research Group (ACBG), BIOTEC) ;
  • Unartngam, Jintana (Department of Plant Pathology, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University) ;
  • Unartngam, Arm (Department of Science, Faculty of Liberal Arts and Science, Kasetsart University) ;
  • Piyaboon, Orawan (Department of Biology and Health Science, Mahidol Wittayanusorn School) ;
  • Sommai, Sujinda (National Science and Technology Development Agency, Plant Microbe Interaction Research Team (APMT), Integrative Crop Biotechnology and Management Research Group (ACBG), BIOTEC) ;
  • Khamsuntorn, Phongsawat (National Science and Technology Development Agency, Plant Microbe Interaction Research Team (APMT), Integrative Crop Biotechnology and Management Research Group (ACBG), BIOTEC)
  • Received : 2021.09.14
  • Accepted : 2022.01.06
  • Published : 2022.02.28

Abstract

Paramyrothecium eichhorniae sp. nov. was observed and collected from Chiang Mai and Phetchaburi Provinces, Thailand. This new species is introduced based on morphological and molecular evidence. This fungus is characterized by its production of sporodochium conidiomata with a white setose fringe surrounding an olivaceous green to dark green slimy mass of conidia, penicillately branched conidiophores, and aseptate and cylindrical to ellipsoid conidia. Phylogenetic analyses of combined LSU rDNA, ITS rDNA, tef1, rpb2, tub2 and cmdA sequence data using maximum parsimony, maximum likelihood and Bayesian approaches placed the fungus in a strongly supported clade with other Paramyrothecium species in Stachybotryaceae (Hypocreales, Sordariomycetes). The descriptions of the species are accompanied by illustrations of morphological features, and a discussion of the related taxa is presented.

Keywords

Acknowledgement

This study was supported by National Science and Technology Development Agency (NSTDA), grant P-17-51470. Mr. Sarunyou Wongkanoun is acknowledged for assistance to submit the sequences to GenBank (NCBI).

References

  1. Liyange NP, Gunasekera SA. Integration of Myrothecium roridum and 2,4-D in water hyacinth management. J Biol Chem. 1989;193:265-275.
  2. Tegene S, Hussein T, Tessema T, et al. Exploration of fungal pathogens associated with water hyacinth (Eichhornia crassipes (mart.) Solms-Laubach) in Ethiopia. Afr J Agric Res. 2012;7:11-18.
  3. Ray P, Sushilkumar, Pandey AK. Efficacy of pathogens of water hyacinth (Eichhornia crassipes) singly and in combination for its biological control. J Biol Control. 2008; 22:173-177.
  4. Piyaboon O, Unartngam A, Unartngam J. Effectiveness of Myrothecium roridum for controlling water hyacinth and species identification based on molecular data. Afr J Microbiol Res. 2014;8:1444-1452. https://doi.org/10.5897/AJMR2013.6214
  5. Piyaboon O, Unartngam A, Unartngam J. Genetic relationships of Myrothecium roridum isolated from water hyacinth in Thailand using ISSR markers and ITS sequence analysis. J Agric Sci Technol. 2016;12:249-261.
  6. Okunowo WO, Osuntoki AA, Adekunle AA, et al. Occurrence and effectiveness of an indigenous strain of Myrothecium roridum tode: fries as a bioherbicide for water hyacinth (Eichhornia crassipes) in Nigeria. Biocontrol Sci Technol. 2013;23(12):1387-1401. https://doi.org/10.1080/09583157.2013.839981
  7. Lee HB, Kim JC, Hong KS, et al. Evaluation of fungal strain, Myrothecium roridum F0252, as a bioherbicide agent. Plant Pathol J. 2008;24(4):453-460. https://doi.org/10.5423/PPJ.2008.24.4.453
  8. Piyaboon O, Pawongrat R, Unartngam J, et al. Pathogenicity, host range and activities of a secondary metabolite and enzyme from Myrothecium roridum on water hyacinth from Thailand. Weed Biol. Manag. 2016;16(3):132-144. https://doi.org/10.1111/wbm.12104
  9. Lombard L, Houbraken J, Decock C, et al. Generic hyper-diversity in Stachybotriaceae. Persoonia. 2016;36:150-246.
  10. Krisai-Greilhuber I, Chen Y, Jabeen S, et al. Fungal systematics and evolution: FUSE 3. Sydowia. 2017;69:229-264.
  11. O'Donnell K, Cigelnik E, Weber NS, et al. Phylogenetic relationship among ascomycetous truffle and the true and false morels inferred from 18S and 28S ribosomal DNA sequence analysis. Mycologia. 1997;89(1):48-65. https://doi.org/10.2307/3761172
  12. Sakayaroj J. Phylogenetics relationships of marine Ascomycota. Ph.D. Thesis, Prince of Songkla University, Thailand. 2005.
  13. White TF, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M.A., Gelfand, D.H., Sninsky, F.S. & White, T.J. (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, California, 1990. pp.315-322.
  14. O'Donnell K, Sarver BAJ, Brandt M, et al. Phylogenetic diversity and microsphere array-based genotyping of human pathogenic fusaria, including isolates from the multistate contact lens-associated U.S. keratitis outbreaks of 2005 and 2006. J Clin Microbiol. 2007;45(7):2235-2248. https://doi.org/10.1128/JCM.00533-07
  15. O'Donnell K, Cigelnik E. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol Phylogenet Evol. 1997;7(1):103-116. https://doi.org/10.1006/mpev.1996.0376
  16. Carbone I, Kohn LM. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia. 1999;91(3):553-556. https://doi.org/10.2307/3761358
  17. Groenewald JZ, Nakashima C, Nishikawa J, et al. Species concepts in Cercospora: spotting the weeds among the roses. Stud Mycol. 2013;75(1):115-170. https://doi.org/10.3114/sim0012
  18. Liang J, Li G, Zhou S, et al. Myrothecium-like new species from turfgrasses and associated rhizosphere. MycoKeys. 2019;51:29-53. https://doi.org/10.3897/mycokeys.51.31957
  19. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95-98.
  20. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792-1797. https://doi.org/10.1093/nar/gkh340
  21. Swofford DL. PAUP: Phylogenetic analysis using parsimony, version 4.0b10. Sunderland (MA): Sinauer Associates, Inc. Publishers. 2002.
  22. Miller M, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop 2010 (GCE), New Orleans, Louisiana, November 2010. pp. 1-8.
  23. Huelsenbeck JP, Ronquist F. MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17(8):754-755. https://doi.org/10.1093/bioinformatics/17.8.754
  24. Ronquist F, Huelsenbeck JP. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19(12):1572-1574. https://doi.org/10.1093/bioinformatics/btg180
  25. Nylander JAA. MrModelTest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden. 2004.
  26. Larget B, Simon DL. Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Mol Biol Evol. 1999;16(6):750-759. https://doi.org/10.1093/oxfordjournals.molbev.a026160