Acknowledgement
This study was supported by National Science and Technology Development Agency (NSTDA), grant P-17-51470. Mr. Sarunyou Wongkanoun is acknowledged for assistance to submit the sequences to GenBank (NCBI).
References
- Liyange NP, Gunasekera SA. Integration of Myrothecium roridum and 2,4-D in water hyacinth management. J Biol Chem. 1989;193:265-275.
- Tegene S, Hussein T, Tessema T, et al. Exploration of fungal pathogens associated with water hyacinth (Eichhornia crassipes (mart.) Solms-Laubach) in Ethiopia. Afr J Agric Res. 2012;7:11-18.
- Ray P, Sushilkumar, Pandey AK. Efficacy of pathogens of water hyacinth (Eichhornia crassipes) singly and in combination for its biological control. J Biol Control. 2008; 22:173-177.
- Piyaboon O, Unartngam A, Unartngam J. Effectiveness of Myrothecium roridum for controlling water hyacinth and species identification based on molecular data. Afr J Microbiol Res. 2014;8:1444-1452. https://doi.org/10.5897/AJMR2013.6214
- Piyaboon O, Unartngam A, Unartngam J. Genetic relationships of Myrothecium roridum isolated from water hyacinth in Thailand using ISSR markers and ITS sequence analysis. J Agric Sci Technol. 2016;12:249-261.
- Okunowo WO, Osuntoki AA, Adekunle AA, et al. Occurrence and effectiveness of an indigenous strain of Myrothecium roridum tode: fries as a bioherbicide for water hyacinth (Eichhornia crassipes) in Nigeria. Biocontrol Sci Technol. 2013;23(12):1387-1401. https://doi.org/10.1080/09583157.2013.839981
- Lee HB, Kim JC, Hong KS, et al. Evaluation of fungal strain, Myrothecium roridum F0252, as a bioherbicide agent. Plant Pathol J. 2008;24(4):453-460. https://doi.org/10.5423/PPJ.2008.24.4.453
- Piyaboon O, Pawongrat R, Unartngam J, et al. Pathogenicity, host range and activities of a secondary metabolite and enzyme from Myrothecium roridum on water hyacinth from Thailand. Weed Biol. Manag. 2016;16(3):132-144. https://doi.org/10.1111/wbm.12104
- Lombard L, Houbraken J, Decock C, et al. Generic hyper-diversity in Stachybotriaceae. Persoonia. 2016;36:150-246.
- Krisai-Greilhuber I, Chen Y, Jabeen S, et al. Fungal systematics and evolution: FUSE 3. Sydowia. 2017;69:229-264.
- O'Donnell K, Cigelnik E, Weber NS, et al. Phylogenetic relationship among ascomycetous truffle and the true and false morels inferred from 18S and 28S ribosomal DNA sequence analysis. Mycologia. 1997;89(1):48-65. https://doi.org/10.2307/3761172
- Sakayaroj J. Phylogenetics relationships of marine Ascomycota. Ph.D. Thesis, Prince of Songkla University, Thailand. 2005.
- White TF, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M.A., Gelfand, D.H., Sninsky, F.S. & White, T.J. (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, California, 1990. pp.315-322.
- O'Donnell K, Sarver BAJ, Brandt M, et al. Phylogenetic diversity and microsphere array-based genotyping of human pathogenic fusaria, including isolates from the multistate contact lens-associated U.S. keratitis outbreaks of 2005 and 2006. J Clin Microbiol. 2007;45(7):2235-2248. https://doi.org/10.1128/JCM.00533-07
- O'Donnell K, Cigelnik E. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol Phylogenet Evol. 1997;7(1):103-116. https://doi.org/10.1006/mpev.1996.0376
- Carbone I, Kohn LM. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia. 1999;91(3):553-556. https://doi.org/10.2307/3761358
- Groenewald JZ, Nakashima C, Nishikawa J, et al. Species concepts in Cercospora: spotting the weeds among the roses. Stud Mycol. 2013;75(1):115-170. https://doi.org/10.3114/sim0012
- Liang J, Li G, Zhou S, et al. Myrothecium-like new species from turfgrasses and associated rhizosphere. MycoKeys. 2019;51:29-53. https://doi.org/10.3897/mycokeys.51.31957
- Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95-98.
- Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792-1797. https://doi.org/10.1093/nar/gkh340
- Swofford DL. PAUP: Phylogenetic analysis using parsimony, version 4.0b10. Sunderland (MA): Sinauer Associates, Inc. Publishers. 2002.
- Miller M, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop 2010 (GCE), New Orleans, Louisiana, November 2010. pp. 1-8.
- Huelsenbeck JP, Ronquist F. MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17(8):754-755. https://doi.org/10.1093/bioinformatics/17.8.754
- Ronquist F, Huelsenbeck JP. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19(12):1572-1574. https://doi.org/10.1093/bioinformatics/btg180
- Nylander JAA. MrModelTest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden. 2004.
- Larget B, Simon DL. Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Mol Biol Evol. 1999;16(6):750-759. https://doi.org/10.1093/oxfordjournals.molbev.a026160