Acknowledgement
This work was supported by Samsung Research Funding & Incubation Center of Samsung Electronics (Project Number SRFC-TC2003-03).
References
- Abbott NJ, Patabendige AA, Dolman DE, Yusof SR and Begley DJ (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37, 13-25 https://doi.org/10.1016/j.nbd.2009.07.030
- Obermeier B, Daneman R and Ransohoff RM (2013) Development, maintenance and disruption of the blood-brain barrier. Nat Med 19, 1584-1596 https://doi.org/10.1038/nm.3407
- Abbott NJ, Ronnback L and Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7, 41-53 https://doi.org/10.1038/nrn1824
- Huber JD, Egleton RD and Davis TP (2001) Molecular physiology and pathophysiology of tight junctions in the blood-brain barrier. Trends Neurosci 24, 719-725 https://doi.org/10.1016/S0166-2236(00)02004-X
- Abbott NJ (2013) Blood-brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis 36, 437-449 https://doi.org/10.1007/s10545-013-9608-0
- Schinkel AH (1999) P-Glycoprotein, a gatekeeper in the blood-brain barrier. Adv Drug Deliv Rev 36, 179-194 https://doi.org/10.1016/S0169-409X(98)00085-4
- De Bock M, Van Haver V, Vandenbroucke RE, Decrock E, Wang N and Leybaert L (2016) Into rather unexplored terrain-transcellular transport across the blood-brain barrier. Glia 64, 1097-1123 https://doi.org/10.1002/glia.22960
- Pardridge WM (2005) The blood-brain barrier: bottleneck in brain drug development. NeuroRx 2, 3-14 https://doi.org/10.1602/neurorx.2.1.3
- Banks WA (2016) From blood-brain barrier to blood-brain interface: new opportunities for CNS drug delivery. Nat Rev Drug Discov 15, 275-292 https://doi.org/10.1038/nrd.2015.21
- Geldenhuys WJ, Allen DD and Bloomquist JR (2012) Novel models for assessing blood-brain barrier drug permeation. Expert Opin Drug Metab Toxicol 8, 647-653 https://doi.org/10.1517/17425255.2012.677433
- Hajal C, Le Roi B, Kamm RD and Maoz BM (2021) Biology and models of the blood-brain barrier. Annu Rev Biomed Eng 23, 359-384 https://doi.org/10.1146/annurev-bioeng-082120-042814
- Van Norman GA (2019) Limitations of animal studies for predicting toxicity in clinical trials: is it time to rethink our current approach? JACC Basic Transl Sci 4, 845-854 https://doi.org/10.1016/j.jacbts.2019.10.008
- Dawson TM, Golde TE and Lagier-Tourenne C (2018) Animal models of neurodegenerative diseases. Nat Neurosci 21, 1370-1379 https://doi.org/10.1038/s41593-018-0236-8
- Akhtar A (2015) The flaws and human harms of animal experimentation. Camb Q Healthc Ethics 24, 407-419 https://doi.org/10.1017/S0963180115000079
- Bowman PD, Ennis SR, Rarey KE, Betz AL and Goldstein GW (1983) Brain microvessel endothelial cells in tissue culture: a model for study of blood-brain barrier permeability. Ann Neurol 14, 396-402 https://doi.org/10.1002/ana.410140403
- Rauh J, Meyer J, Beuckmann C and Galla HJ (1992) Development of an in vitro cell culture system to mimic the blood-brain barrier. Prog Brain Res 91, 117-121 https://doi.org/10.1016/S0079-6123(08)62325-0
- Stone NL, England TJ and O'Sullivan SE (2019) A novel transwell blood brain barrier model using primary human cells. Front Cell Neurosci 13, 230 https://doi.org/10.3389/fncel.2019.00230
- Srinivasan B, Kolli AR, Esch MB, Abaci HE, Shuler ML and Hickman JJ (2015) TEER measurement techniques for in vitro barrier model systems. J Lab Autom 20, 107-126 https://doi.org/10.1177/2211068214561025
- Clevers H (2016) Modeling development and disease with organoids. Cell 165, 1586-1597 https://doi.org/10.1016/j.cell.2016.05.082
- Pham MT, Pollock KM, Rose MD et al (2018) Generation of human vascularized brain organoids. Neuroreport 29, 588-593 https://doi.org/10.1097/WNR.0000000000001014
- Qian X, Song H and Ming GL (2019) Brain organoids: advances, applications and challenges. Development 146, dev166074 https://doi.org/10.1242/dev.166074
- Shi Y, Sun L, Wang M et al (2020) Vascularized human cortical organoids (vOrganoids) model cortical development in vivo. PLoS Biol 18, e3000705 https://doi.org/10.1371/journal.pbio.3000705
- Cakir B, Xiang Y, Tanaka Y et al (2019) Engineering of human brain organoids with a functional vascular-like system. Nat Methods 16, 1169-1175 https://doi.org/10.1038/s41592-019-0586-5
- Mansour AA, Goncalves JT, Bloyd CW et al (2018) An in vivo model of functional and vascularized human brain organoids. Nat Biotechnol 36, 432-441 https://doi.org/10.1038/nbt.4127
- Wang X, Xu B, Xiang M et al (2020) Advances on fluid shear stress regulating blood-brain barrier. Microvasc Res 128, 103930 https://doi.org/10.1016/j.mvr.2019.103930
- van der Meer AD, Poot AA, Feijen J and Vermes I (2010) Analyzing shear stress-induced alignment of actin filaments in endothelial cells with a microfluidic assay. Biomicrofluidics 4, 11103 https://doi.org/10.1063/1.3366720
- Xu H, Li Z, Yu Y et al (2016) A dynamic in vivo-like organotypic blood-brain barrier model to probe metastatic brain tumors. Sci Rep 6, 36670 https://doi.org/10.1038/srep36670
- Wang YI, Abaci HE and Shuler ML (2017) Microfluidic blood-brain barrier model provides in vivo-like barrier properties for drug permeability screening. Biotechnol Bioeng 114, 184-194 https://doi.org/10.1002/bit.26045
- Bhatia SN and Ingber DE (2014) Microfluidic organs-on-chips. Nat Biotechnol 32, 760-772 https://doi.org/10.1038/nbt.2989
- Duffy DC, McDonald JC, Schueller OJ and Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70, 4974-4984 https://doi.org/10.1021/ac980656z
- Xia Y and Whitesides GM (1998) Soft lithography. Angew Chem Int Ed Engl 37, 550-575 https://doi.org/10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G
- Viravaidya K, Sin A and Shuler ML (2004) Development of a microscale cell culture analog to probe naphthalene toxicity. Biotechnol Prog 20, 316-323 https://doi.org/10.1021/bp0341996
- Sin A, Chin KC, Jamil MF, Kostov Y, Rao G and Shuler ML (2004) The design and fabrication of three-chamber micro-scale cell culture analog devices with integrated dissolved oxygen sensors. Biotechnol Prog 20, 338-345 https://doi.org/10.1021/bp034077d
- Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY and Ingber DE (2010) Reconstituting organ-level lung functions on a chip. Science 328, 1662-1668 https://doi.org/10.1126/science.1188302
- Zhang B, Korolj A, Lai BFL and Radisic M (2018) Advances in organ-on-a-chip engineering. Nat Rev Mater 3, 257-278 https://doi.org/10.1038/s41578-018-0034-7
- Zhang B and Radisic M (2017) Organ-on-a-chip devices advance to market. Lab Chip 17, 2395-2420 https://doi.org/10.1039/C6LC01554A
- Ma C, Peng Y, Li H and Chen W (2021) Organ-on-a-chip: a new paradigm for drug development. Trends Pharmacol Sci 42, 119-133 https://doi.org/10.1016/j.tips.2020.11.009
- Reardon S (2015) 'Organs-on-chips' go mainstream. Nature 523, 266 https://doi.org/10.1038/523266a
- Park TE, Mustafaoglu N, Herland A et al (2019) Hypoxia-enhanced blood-brain barrier chip recapitulates human barrier function and shuttling of drugs and antibodies. Nat Commun 10, 2621 https://doi.org/10.1038/s41467-019-10588-0
- Seo S, Nah SY, Lee K, Choi N and Kim HN (2021) Triculture model of in vitro BBB and its application to study BBB-associated chemosensitivity and drug delivery in glioblastoma. Adv Funct Mater 32, 2106860
- Bang S, Lee SR, Ko J et al (2017) A low permeability microfluidic blood-brain barrier platform with direct contact between perfusable vascular network and astrocytes. Sci Rep 7, 8083 https://doi.org/10.1038/s41598-017-07416-0
- Urich E, Patsch C, Aigner S, Graf M, Iacone R and Freskgard PO (2013) Multicellular self-assembled spheroidal model of the blood brain barrier. Sci Rep 3, 1500 https://doi.org/10.1038/srep01500
- Cho CF, Wolfe JM, Fadzen CM et al (2017) Blood-brain-barrier spheroids as an in vitro screening platform for brain-penetrating agents. Nat Commun 8, 15623 https://doi.org/10.1038/ncomms15623
- Eilenberger C, Rothbauer M, Selinger F et al (2021) A microfluidic multisize spheroid array for multiparametric screening of anticancer drugs and blood-brain barrier transport properties. Adv Sci (Weinh) 8, e2004856
- Rosenberg GA (2012) Neurological diseases in relation to the blood-brain barrier. J Cereb Blood Flow Metab 32, 1139-1151 https://doi.org/10.1038/jcbfm.2011.197
- Schoknecht K and Shalev H (2012) Blood-brain barrier dysfunction in brain diseases: clinical experience. Epilepsia 53 Suppl 6, 7-13 https://doi.org/10.1111/j.1528-1167.2012.03697.x
- Daneman R (2012) The blood-brain barrier in health and disease. Ann Neurol 72, 648-672 https://doi.org/10.1002/ana.23648
- Sweeney MD, Sagare AP and Zlokovic BV (2018) Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol 14, 133-150 https://doi.org/10.1038/nrneurol.2017.188
- Yoon JK, Kim J, Shah Z, Awasthi A, Mahajan A and Kim Y (2021) Advanced human BBB-on-a-chip: a new platform for Alzheimer's disease studies. Adv Healthc Mater 10, e2002285
- Drummond E and Wisniewski T (2017) Alzheimer's disease: experimental models and reality. Acta Neuropathol 133, 155-175 https://doi.org/10.1007/s00401-016-1662-x
- Golaszewska A, Bik W, Motyl T and Orzechowski A (2019) Bridging the gap between Alzheimer's disease and Alzheimer's-like diseases in animals. Int J Mol Sci 20, 1664 https://doi.org/10.3390/ijms20071664
- Cummings J, Feldman HH and Scheltens P (2019) The "rights" of precision drug development for Alzheimer's disease. Alzheimers Res Ther 11, 76 https://doi.org/10.1186/s13195-019-0529-5
- Shin Y, Choi SH, Kim E et al (2019) Blood-brain barrier dysfunction in a 3D in vitro model of Alzheimer's disease. Adv Sci (Weinh) 6, 1900962 https://doi.org/10.1002/advs.201900962
- Yang C, Hawkins KE, Dore S and Candelario-Jalil E (2019) Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke. Am J Physiol Cell Physiol 316, C135-C153 https://doi.org/10.1152/ajpcell.00136.2018
- Wang Y and Cai Y (2016) Obtaining human ischemic stroke gene expression biomarkers from animal models: a cross-species validation study. Sci Rep 6, 29693 https://doi.org/10.1038/srep29693
- Xiong Y, Mahmood A and Chopp M (2013) Animal models of traumatic brain injury. Nat Rev Neurosci 14, 128-142 https://doi.org/10.1038/nrn3407
- Lyu Z, Park J, Kim KM et al (2021) A neurovascular-unit-on-a-chip for the evaluation of the restorative potential of stem cell therapies for ischaemic stroke. Nat Biomed Eng 5, 847-863 https://doi.org/10.1038/s41551-021-00744-7
- Chaudhuri JD (2000) Blood brain barrier and infection. Med Sci Monit 6, 1213-1222
- Kim J, Lee KT, Lee JS et al (2021) Fungal brain infection modelled in a human-neurovascular-unit-on-a-chip with a functional blood-brain barrier. Nat Biomed Eng 5, 830-846 https://doi.org/10.1038/s41551-021-00743-8
- Buzhdygan TP, DeOre BJ, Baldwin-Leclair A et al (2020) The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in-vitro models of the human blood-brain barrier. Neurobiol Dis 146, 105131 https://doi.org/10.1016/j.nbd.2020.105131
- Kim Y, Stolarska MA and Othmer HG (2011) The role of the microenvironment in tumor growth and invasion. Prog Biophys Mol Biol 106, 353-379 https://doi.org/10.1016/j.pbiomolbio.2011.06.006
- Kim HN, Habbit NL, Su CY et al (2019) Microphysiological systems as enabling tools for modeling complexity in the tumor microenvironment and accelerating cancer drug development. Adv Funct Mater 29, 1807553 https://doi.org/10.1002/adfm.201807553
- Pardridge WM (2007) Blood-brain barrier delivery. Drug Discov Today 12, 54-61 https://doi.org/10.1016/j.drudis.2006.10.013
- Ahn SI, Sei YJ, Park HJ et al (2020) Microengineered human blood-brain barrier platform for understanding nanoparticle transport mechanisms. Nat Commun 11, 175 https://doi.org/10.1038/s41467-019-13896-7