DOI QR코드

DOI QR Code

Electrochemical Properties of Trimethylammonium Tetrafluoroborate in Electrochemical Double-Layer Capacitors

  • Lee, Sooyeon (Department of Chemistry & Energy Engineering, Sangmyung University) ;
  • Lee, Kyung Min (Department of Chemistry & Energy Engineering, Sangmyung University) ;
  • Kim, Ketack (Department of Chemistry & Energy Engineering, Sangmyung University)
  • Received : 2021.08.18
  • Accepted : 2021.11.13
  • Published : 2022.05.28

Abstract

Trimethylammonium tetrafluoroborate (TriMA BF4), consisting of the smallest trialkylammonium ion, was investigated for use in electrochemical double-layer capacitors. Despite the presence of a proton in TriMA+, cycle life tests in acetonitrile (AN) and -butyrolactone (GBL) showed a good capacity retention with a 1.8 V cut-off voltage. The rate of electrolysis of TriMA BF4 in GBL was lower than that in AN because of the lower conductivity in GBL. As a consequence, the cells based on GBL achieved a higher capacitance and longer life than those with AN. TriMA BF4 had a higher conductivity and lower viscosity than the quaternary salt tetraethylammonium tetrafluoroborate in GBL, as well as higher ionic mobility, these factors resulted in a higher rate capability.

Keywords

Acknowledgement

A research grant from Sangmyung University (2020-A000-0022) supported this research.

References

  1. S. Park and K. Kim, J. Power Sources, 2017, 338, 129-135. https://doi.org/10.1016/j.jpowsour.2016.10.080
  2. A.R. Koh, B. Hwang, K. Chul Roh and K. Kim, Phys. Chem. Chem. Phys., 2014, 16(29), 15146-15151. https://doi.org/10.1039/c4cp00949e
  3. M. Ue, J. Electrochem. Soc., 1994, 141(12), 3336-3342. https://doi.org/10.1149/1.2059336
  4. A. Brandt, J. Pires, M. Anouti and A. Balducci, Electrochim. Acta, 2013, 108, 226-231. https://doi.org/10.1016/j.electacta.2013.06.118
  5. M. Anouti and L. Timperman, Phys Chem Chem Phys, 2013, 15(17), 6539-6548. https://doi.org/10.1039/c3cp44680h
  6. T. Stettner, G. Lingua, M. Falco, A. Balducci and C. Gerbaldi, Energy Technol., 2020, 8(11), 2000742. https://doi.org/10.1002/ente.202000742
  7. T. Stettner, S. Gehrke, P. Ray, B. Kirchner and A. Balducci, ChemSusChem, 2019, 12(16), 3827-3836. https://doi.org/10.1002/cssc.201901283
  8. L. Timperman, P. Skowron, A. Boisset, H. Galiano, D. Lemordant, E. Frackowiak, F. Beguin and M. Anouti, Phys. Chem. Chem. Phys., 2012, 14(22), 8199-8207. https://doi.org/10.1039/c2cp40315c
  9. L. Demarconnay, E.G. Calvo, L. Timperman, M. Anouti, D. Lemordant, E. Raymundo-Pinero, A. Arenillas, J.A. Menendez and F. Beguin, Electrochim. Acta, 2013, 108, 361-368. https://doi.org/10.1016/j.electacta.2013.07.001
  10. N. Liang, G.Q. Li, Y.S. Ji, J. Xu, D.Y. Zuo, L.K. Huang and H.W. Zhang, Int. J. Hydrogen Energy, 2019, 44(3), 1797-1802. https://doi.org/10.1016/j.ijhydene.2018.11.107
  11. H. Gao and K. Lian, RSC Adv., 2014, 4(62), 33091-33113. https://doi.org/10.1039/C4RA05151C
  12. S. Ketabi, B. Decker and K. Lian, Solid State Ion., 2016, 298, 73-79. https://doi.org/10.1016/j.ssi.2016.11.010
  13. E. Coadou, L. Timperman, J. Jacquemin, H. Galiano, C. Hardacre and M. Anouti, J. Phys. Chem. C, 2013, 117(20), 10315-10325. https://doi.org/10.1021/jp402485z
  14. R. Mysyk, E. Raymundo-Pinero, M. Anouti, D. Lemordant and F. Beguin, Electrochem. Commun., 2010, 12(3), 414-417. https://doi.org/10.1016/j.elecom.2010.01.007
  15. R. Giardi, S. Porro, T. Topuria, L. Thompson, C.F. Pirri and H.-C. Kim, Appl. Mater. Today, 2015, 1(1), 27-32. https://doi.org/10.1016/j.apmt.2015.08.001
  16. H.B. Xu, X.Z. Fan, Y.H. Lu, L.A. Zhong, X.F. Kong and J. Wang, Carbon, 2010, 48(11), 3300-3303. https://doi.org/10.1016/j.carbon.2010.04.051
  17. J. Yang, J. Hong, S. Yang, I.-J. Kim and K. Kim, Electrochim. Acta, 2019, 322, 134748. https://doi.org/10.1016/j.electacta.2019.134748
  18. P.W. Ruch, D. Cericola, A. Foelske, R. Kotz and A. Wokaun, Electrochim. Acta, 2010, 55(7), 2352-2357. https://doi.org/10.1016/j.electacta.2009.11.098
  19. Y. Liu, B. Soucaze-Guillous, P.L. Taberna and P. Simon, J. Power Sources, 2017, 366, 123-130. https://doi.org/10.1016/j.jpowsour.2017.08.104
  20. R.-S. Kuhnel, J. Reiter, S. Jeong, S. Passerini and A. Balducci, Electrochem. Commun., 2014, 38, 117-119. https://doi.org/10.1016/j.elecom.2013.11.014
  21. H. Shao, Y.C. Wu, Z. Lin, P.L. Taberna and P. Simon, Chem Soc Rev, 2020, 49(10), 3005-3039. https://doi.org/10.1039/d0cs00059k
  22. N.N. Wu, X. Bai, D. Pan, B.B. Dong, R.B. Wei, N. Naik, R.R. Patil and Z.H. Guo, Adv. Mater. Interfaces, 2021, 8(1), 2001710. https://doi.org/10.1002/admi.202001710
  23. P.J. Linstrom and W.G. Mallard, National Institute of Standards and Technology, Gaithersburg MD, 2018, 20899.
  24. J.R. Tian, C.J. Cui, Q. Xie, W.Z. Qian, C. Xue, Y.H. Miao, Y. Jin, G. Zhang and B.H. Guo, J. Mater. Chem. A, 2018, 6(8), 3593-3601. https://doi.org/10.1039/C7TA10474J
  25. L. Dagousset, G. Pognon, G.T.M. Nguyen, F. Vidal, S. Jus and P.H. Aubert, J. Power Sources, 2017, 359, 242-249. https://doi.org/10.1016/j.jpowsour.2017.05.068
  26. M. Ue, K. Ida and S. Mori, J. Electrochem. Soc., 1994, 141(11), 2989-2996. https://doi.org/10.1149/1.2059270