DOI QR코드

DOI QR Code

형상기억합금을 이용한 슬릿댐퍼 적용 역V형 편심가새골조의 내진 성능

Seismic Performance of an Inverted V-type Eccentrically Braced Steel Frames with Slit Dampers Using Shape Memory Alloy

  • 투고 : 2022.08.08
  • 심사 : 2022.10.02
  • 발행 : 2022.12.15

초록

The energy dissipation of inverted V-type eccentric steel braced frames can be achieved through the yielding of a slit link, through yielding of a number of strips between slits when the frame is subjected to inelastic cyclic deformation. On the other hand, the development of seismic resistance system without residual deformation is obtained by applying the superelasdtic shape memory alloy (SMA) material into the brace and link elements. This paper presents results from a systematic three-dimensional nonlinear finite element analysis on the structural behavior of the eccentric bracing systems subjected to cyclic loadings. A wide scope of structural behaviors explains the horizontal stiffness, hysteretic behaviors, and failure modes of the recentering eccentric bracing system. The accurate results presented here serve as benchmark data for comparison with results obtained using modern experimental testing and alternative theoretical approaches.

키워드

과제정보

이 연구는 한국연구재단 지역대학 우수과학자지원 사업(과제번호 : 2020R1I1A3065908)으로 수행되었으며 연구비 지원에 감사드립니다.

참고문헌

  1. Fujimoto, M., Aoyagi, T., Ukai, K., Wada, A., & Saito, K., "Structural Characteristics of Eccentric K-Braced Frames", Trans.AIJ, no. 195, pp.39-49, 1972. 
  2. Stratan, A., Dogariu, A., & Dubina, D., "Bolted links for eccentrically braced frames: Influence of link stiffness", Structures Congress 2009, pp.847-853, 2007. 
  3. Musmar, M. A., "Effect of Link on Eccentrically Braced Frames", Journal of Engineering Sciences, Assiut University, Vol. 40, No. 1, pp. 35-43, 2012, doi: 10.21608/jesaun.2012.112712 
  4. Auricchio, F. & Sacco, E., "A one-dimensional model for superelastic shape-memory alloys with different elastic properties between austenite and martensite", International Journal of Non-Linear Mechanics, Vol. 32, No. 6, pp. 1101-1114, 1997, doi: 10.1016/S0020-7462(96)00130-8 
  5. Auricchio, F., Taylor, R. L., & Lubliner, J., "Shape-memory alloy: macromodelling and numerical simulations of the superelastic behavior", Computer Methods in Applied Mechanics and Engineering, Vol. 146, No. 3-4, pp. 281-312, 1997, doi: 10.1016/S0045-7825(96)01232-7 
  6. Mualla, I. H. & Belev, B., "Performance of steel frames with a new friction damper device under earthquake excitation", Eng. Struct., 24, pp. 365-371, 2002, doi: 10.1016/S0141-0296(01)00102-X 
  7. Dolce, M., Cardone, D., Ponzo, F. C., & Valente, C., "Shaking Table Tests on Reinforced Concrete Frames without and with Passive Control Systems", Earthquake Engineering & Structural Dynamics, Vol.. 34, No. 14, pp. 1687-1717, 2005, doi: 10.1002/eqe.501 
  8. Lee, S. J. & Kim, J. W., "Recentering X-Braced Steel Frames Using Sperelastic Shape Memory Alloy", Jourmal of Korean Association for Spatial Structures, Vol. 18, No. 2, pp. 109-119, 2018, doi: 10.9712/KASS.2018.18.2.109 
  9. Kim, J. H., Kim, J. W. & Lee, S. J., "Hysteresis Behavior of Recentering Diagonal Bracing Steel Frames", Journal of Korean Society of Steel Con struction, Vol. 30, No. 4, pp. 185-192, 2018 
  10. Yoon, S. H. & Kim, J. W., "Seismic Recentering Effects of Chevron Braced Steel Frames with SMA", Jourmal of Korean Association for Spatial Structures, Vol. 20, No. 3, pp. 53-61, 2020, doi: 10.9712/KASS.2020.20.3.53 
  11. Architectural Institute of Korea, "Korean Building Code and Commentary(KBC-2016)", 2016. 
  12. ANSYS, "Reference Manual", Ver. 18.0, 2019. 
  13. Yoo, J. H., "Analytical Investigation for Improved Design Models of Chevron Braced Frames", Journal of Earthquake Engineering Society of Korea, Vol. 13, No. 5, pp.73-78, 2009, doi: 10.5000/EESK.2009.13.5.073 
  14. DesRoche, R., McCormic, J., & Delemont, M., "Cyclic Properties of Superelastic Shape Memory Alloy Wires and Bars", Journal of Structural Engineering, Vol. 130, No. 1, pp. 38-46, 2004, doi: 10.1061/(ASCE)0733-9445(2004)130:1(38)