DOI QR코드

DOI QR Code

Etiological and pathophysiological enigmas of severe coronavirus disease 2019, multisystem inflammatory syndrome in children, and Kawasaki disease

  • Rhim, Jung-Woo (Department of Pediatrics, The Catholic University of Korea College of Medicine) ;
  • Kang, Jin-Han (Department of Pediatrics, The Catholic University of Korea College of Medicine) ;
  • Lee, Kyung-Yil (Department of Pediatrics, The Catholic University of Korea College of Medicine)
  • 투고 : 2021.08.19
  • 심사 : 2021.11.01
  • 발행 : 2022.04.15

초록

During the coronavirus disease 2019 (COVID-19) pandemic, a novel multisystem inflammatory syndrome in children (MIS-C) has been reported worldwide since the first cases were reported in Europe in April 2020. MIS-C is temporally associated with severe acute respiratory syndrome coronavirus 2 infection and shows Kawasaki disease (KD)-like features. The epidemiological and clinical characteristics in COVID-19, KD, and MIS-C differ, but severe cases of each disease share similar clinical and laboratory findings such as a protracted clinical course, multiorgan involvement, and similar activated biomarkers. These findings suggest that a common control system of the host may act against severe disease insult. To solve the enigmas, we proposed the protein-homeostasis-system hypothesis in that every disease involves etiological substances and the host's immune system controls them by their size and biochemical properties. Also, it is proposed that the etiological agents of KD and MIS-C might be certain strains in the microbiota of human species and etiological substances in severe COVID-19, KD, and MIS-C originate from pathogen-infected cells. Since disease severity depends on the amounts of inflammation-inducing substances and corresponding immune activation in the early stage of the disease, an early proper dose of corticosteroids and/or intravenous immunoglobulin (IVIG) may help reduce morbidity and possibly mortality among patients with these diseases. Corticosteroids are low cost and an analogue of host-origin cortisol among immune modulators. This study's findings will help clinicians treating severe COVID-19, KD, and MIS-C, especially in developing countries, where IVIG and biologics supplies are insufficient.

키워드

참고문헌

  1. Castagnoli R, Votto M, Licari A, Brambilla I, Bruno R, Perlini S, et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in children and adolescents: a systematic review. JAMA Pediatr 2020;174:882-9. https://doi.org/10.1001/jamapediatrics.2020.1467
  2. Feldstein LR, Tenforde MW, Friedman KG, Newhams M, Rose EB, Dapul H, et al. Characteristics and outcomes of US children and adolescents with multisystem inflammatory syndrome in children (MIS-C) compared with severe acute COVID-19. JAMA 2021;325:1074-87. https://doi.org/10.1001/jama.2021.2091
  3. Lee KY, Rhim JW, Kang JH. Immunopathogenesis of COVID-19 and early immunomodulators. Clin Exp Pediatr 2020;63:239-50. https://doi.org/10.3345/cep.2020.00759
  4. Lee KY. The solution on enigmas in COVID-19: the protein-homeostasis-system hypothesis. J Korean Med Assoc 2020;63:366-72. https://doi.org/10.5124/jkma.2020.63.7.366
  5. Riphagen S, Gomez X, Gonzalez-Martinez C, Wilkinson N, Theocharis P. Hyperinflammatory shock in children during COVID-19 pandemic. Lancet 2020;395:1607-8. https://doi.org/10.1016/s0140-6736(20)31094-1
  6. Feldstein LR, Rose EB, Horwitz SM, Collins JP, Newhams MM, Son MBF, et al. Multisystem inflammatory syndrome in U.S. children and adolescents. N Engl J Med 2020;383:334-46. https://doi.org/10.1056/NEJMoa2021680
  7. Toubiana J, Poirault C, Corsia A, Bajolle F, Fourgeaud J, Angoulvant F, et al. Kawasaki-like multisystem inflammatory syndrome in children during the covid-19 pandemic in Paris, France: prospective observational study. BMJ 2020;369:m2094.
  8. World Health Organization. Multisystem inflammatory syndrome in children and adolescents with COVID-19 [Internet]. Geneva (Switzerland): World Health Organization; 2020 [cited 2020 Jun 6] Available from: https://www.who.int/news-room/commentaries/detail/multisysteminflammatory-syndrome-in-children-and-adolescents-with-covid-19.
  9. Centers for Disease Control and Prevention. Multisystem inflammatory syndrome in children (MIS-C) associated with coronavirus disease 2019 (COVID-19) [Internet]. Atlanta (GA): Centers for Disease Control and Prevention; 2020 [cited 2020 Jun 6] Available from: https://emergency.cdc.gov/han/2020/han00432.asp.
  10. Royal College of Paediatrics and Child Health. Paediatric multisystem inflammatory syndrome temporally associated with COVID-19 (PIMS) - guidance for clinicians [Internet]. London: Royal College of Paediatrics and Child Health; 2020 [cited 2020 Jun 6] Available from: https://www.rcpch.ac.uk/resources/paediatric-multisystem-inflammatory-syndrometemporally-associated-covid-19-pims-guidance.
  11. Lee KY, Rhim JW, Kang JH. Kawasaki disease: laboratory findings and an immunopathogenesis on the premise of a "protein homeostasis system". Yonsei Med J 2012;53:262-75. https://doi.org/10.3349/ymj.2012.53.2.262
  12. Kawasaki T. Acute febrile mucocutaneous syndrome with lymphoid involvement with specific desquamation of the fingers and toes in children. Arerugi 1967;16:178-222.
  13. Shulman ST. Pediatric coronavirus disease-2019-associated multisystem inflammatory syndrome. J Pediatric Infect Dis Soc 2020;9:285-6. https://doi.org/10.1093/jpids/piaa062
  14. Lee KY. A common immunopathogenesis mechanism for infectious diseases: the protein-homeostasis-system hypothesis. Infect Chemother 2015;47:12-26. https://doi.org/10.3947/ic.2015.47.1.12
  15. Lee KY. A unified pathogenesis for kidney diseases, including genetic diseases and cancers, by the protein-homeostasis-system hypothesis. Kidney Res Clin Pract 2017;36:132-44. https://doi.org/10.23876/j.krcp.2017.36.2.132
  16. Dong Y, Mo X, Hu Y, Qi X, Jiang F, Jiang Z, et al. Epidemiology of COVID-19 among children in China. Pediatrics 2020;145:e20200702. https://doi.org/10.1542/peds.2020-0702
  17. Ladhani SN, Amin-Chowdhury Z, Davies HG, Aiano F, Hayden I, Lacy J, et al. COVID-19 in children: analysis of the first pandemic peak in England. Arch Dis Child 2020;105:1180-5. https://doi.org/10.1136/archdischild-2020-320042
  18. Mehta NS, Mytton OT, Mullins EW, Fowler TA, Falconer CL, Murphy OB, et al. SARS-CoV-2 (COVID-19): what do we know about children? A systematic review. Clin Infect Dis 2020;71:2469-79. https://doi.org/10.1093/cid/ciaa556
  19. Rajapakse N, Dixit D. Human and novel coronavirus infections in children: a review. Paediatr Int Child Health. 2021;41:36-55. https://doi.org/10.1080/20469047.2020.1781356
  20. Rhim JW, Go EJ, Lee KY, Youn YS, Kim MS, Park SH, et al. Pandemic 2009 H1N1 virus infection in children and adults: a cohort study at a single hospital throughout the epidemic. Int Arch Med 2012;5:13. https://doi.org/10.1186/1755-7682-5-13
  21. Rhim JW, Lee KY, Youn YS, Kang JH, Kim JC. Epidemiological and clinical characteristics of childhood pandemic 2009 H1N1 virus infection: an observational cohort study. BMC Infect Dis 2011;11:225. https://doi.org/10.1186/1471-2334-11-225
  22. Kim H, Shim JY, Ko JH, Yang A, Shim JW, Kim DS, et al. Multisystem inflammatory syndrome in children related to COVID-19: the first case in Korea. J Korean Med Sci 2020;35:e391. https://doi.org/10.3346/jkms.2020.35.e391
  23. Jain S, Sen S, Lakshmivenkateshiah S, Bobhate P, Venkatesh S, Udani S, et al. Multisystem inflammatory syndrome in children with COVID-19 in Mumbai, India. Indian Pediatr 2020;57:1015-9. https://doi.org/10.1007/s13312-020-2026-0
  24. Antunez-Montes OY, Escamilla MI, Figueroa-Uribe AF, Arteaga-Menchaca E, Lavariega-Sarachaga M, Salcedo-Lozada P, et al. COVID-19 and multisystem inflammatory syndrome in Latin American children: a multinational study. Pediatr Infect Dis J 2021;40:e1-6. https://doi.org/10.1097/INF.0000000000002949
  25. Morris SB, Schwartz NG, Patel P, Abbo L, Beauchamps L, Balan S, et al. Case series of multisystem inflammatory syndrome in adults associated with SARS-CoV-2 infection: United Kingdom and United States, March-August 2020. MMWR Morb Mortal Wkly Rep 2020;69:1450-6. https://doi.org/10.15585/mmwr.mm6940e1
  26. Buonsenso D, Riitano F, Valentini P. Pediatric inflammatory multisystem syndrome temporally related with SARS-CoV-2: Immunological similarities with acute rheumatic fever and toxic shock syndrome. Front Pediatr 2020;8:574. https://doi.org/10.3389/fped.2020.00574
  27. McMurray JC, May JW, Cunningham MW, Jones OY. Multisystem inflammatory syndrome in children (MIS-C), a post-viral myocarditis and systemic vasculitis: a critical review of its pathogenesis and treatment. Front Pediatr 2020;8:626182. https://doi.org/10.3389/fped.2020.626182
  28. Kim GB. Reality of Kawasaki disease epidemiology. Korean J Pediatr 2019;62:292-6. https://doi.org/10.3345/kjp.2019.00157
  29. Ae R, Makino N, Kosami K, Kuwabara M, Matsubara Y, Nakamura Y. Epidemiology, treatments, and cardiac complications in patients with Kawasaki disease: the nationwide survey in Japan, 2017-2018. J Pediatr 2020;225:23-29.e2. https://doi.org/10.1016/j.jpeds.2020.05.034
  30. Kim GB, Eun LY, Han JW, Kim SH, Yoon KL, Han MY, et al. Epidemiology of Kawasaki disease in South Korea: a nationwide survey 2015-2017. Pediatr Infect Dis J 2020;39:1012-6. https://doi.org/10.1097/INF.0000000000002793
  31. Maddox RA, Person MK, Kennedy JL, Leung J, Abrams JY, Haberling DL, et al. Kawasaki disease and Kawasaki disease shock syndrome hospitalization rates in the United States, 2006-2018. Pediatr Infect Dis J 2021;40:284-8. https://doi.org/10.1097/INF.0000000000002982
  32. Kushner HI, Abramowsky CR. An old autopsy report sheds light on a "new" disease: infantile polyarteritis nodosa and Kawasaki disease. Pediatr Cardiol 2010;31:490-6. https://doi.org/10.1007/s00246-009-9625-9
  33. Lee KY, Han JW, Lee JS. Kawasaki disease may be a hyperimmune reaction of genetically susceptible children to variants of normal environmental flora. Med Hypotheses 2007;69:642-51. https://doi.org/10.1016/j.mehy.2006.12.051
  34. Rhim JW, Youn YS, Han JW, Lee SJ, Oh JH, Lee KY. Changes in Kawasaki disease during 2 decades at a single institution in Daejeon, Korea. Pediatr Infect Dis J 2014;33:372-5. https://doi.org/10.1097/INF.0000000000000123
  35. Singh S, Vignesh P, Burgner D. The epidemiology of Kawasaki disease: a global update. Arch Dis Child 2015;100:1084-8. https://doi.org/10.1136/archdischild-2014-307536
  36. Quinn RW. Comprehensive review of morbidity and mortality trends for rheumatic fever, streptococcal disease, and scarlet fever: the decline of rheumatic fever. Rev Infect Dis 1989;11:928-53. https://doi.org/10.1093/clinids/11.6.928
  37. Wang A. The changing epidemiology of infective endocarditis: the paradox of prophylaxis in the current and future eras. J Am Coll Cardiol 2012;59:1977-8. https://doi.org/10.1016/j.jacc.2012.02.030
  38. Kil HR, Yu JW, Lee SC, Rhim JW, Lee KY. Changes in clinical and laboratory features of Kawasaki disease noted over time in Daejeon, Korea. Pediatric Rheumatol 2017;15:60. https://doi.org/10.1186/s12969-017-0192-y
  39. Keum SW, Hur SM, Youn YS, Rhim JW, Suh JS, Lee KY, et al. Changes in acute poststreptococcal glomerulonephritis: an observation study at a single Korean hospital over two decades. Child Kidney Dis 2015;19:112-7. https://doi.org/10.3339/chikd.2015.19.2.112
  40. Rhim JW, Lee YT, Kang HM, Suh JS, Lee KY. Changes in clinical features in Henoch-Schonlein purpura during three decades: an observational study at a single hospital in Korea. Clin Rheumatol 2019;38:2811-8. https://doi.org/10.1007/s10067-019-04628-9
  41. Tajbakhsh A, Gheibi Hayat SM, Taghizadeh H, Akbari A, Inabadi M, Savardashtaki A, et al. COVID-19 and cardiac injury: clinical manifestations, biomarkers, mechanisms, diagnosis, treatment, and follow up. Expert Rev Anti Infect Ther 2021;19:345-57. https://doi.org/10.1080/14787210.2020.1822737
  42. Iadecola C, Anrather J, Kamel H. Effects of COVID-19 on the nervous system. Cell 2020;183:16-27.e1. https://doi.org/10.1016/j.cell.2020.08.028
  43. Sellers SA, Hagan RS, Hayden FG, Fischer WA 2nd. The hidden burden of influenza: A review of the extra-pulmonary complications of influenza infection. Influenza Other Respir Viruses 2017;11:372-93. https://doi.org/10.1111/irv.12470
  44. Lee KY. Pediatric respiratory infections by Mycoplasma pneumoniae. Expert Rev Anti Infect Ther 2008;6:509-21. https://doi.org/10.1586/14787210.6.4.509
  45. Kobayashi T, Ayusawa M, Suzuki H, Abe J, Ito S, Kato K, et al. Revision of diagnostic guidelines for Kawasaki disease (6th revised edition). Pediatr Int 2020;62:1135-8. https://doi.org/10.1111/ped.14326
  46. McCrindle BW, Rowley AH, Newburger JW, Burns JC, Bolger AF, Gewitz M, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the American Heart Association. Circulation 2017;135:e927-9. https://doi.org/10.1161/CIR.0000000000000484
  47. Lee KY, Oh JH, Han JW, Lee JS, Lee BC. Arthritis in Kawasaki disease after responding to intravenous immunoglobulin treatment. Eur J Pediatr 2005;164:451-2. https://doi.org/10.1007/s00431-005-1653-8
  48. Lee KJ, Kim HJ, Kim MJ, Yoon JH, Lee EJ, Lee JY, et al. Usefulness of anterior uveitis as an additional tool for diagnosing incomplete Kawasaki disease. Korean J Pediatr 2016;59:174-7. https://doi.org/10.3345/kjp.2016.59.4.174
  49. Nomura O, Hashimoto N, Ishiguro A, Miyasaka M, Nosaka S, Oana S, et al. Comparison of patients with Kawasaki disease with retropharyngeal edema and patients with retropharyngeal abscess. Eur J Pediatr 2014;173:381-6. https://doi.org/10.1007/s00431-013-2179-0
  50. Capone CA, Subramony A, Sweberg T, Schneider J, Shah S, Rubin L, et al. Characteristics, cardiac involvement, and outcomes of multisystem inflammatory syndrome of childhood associated with severe acute respiratory syndrome coronavirus 2 infection. J Pediatr 2020;224:141-5. https://doi.org/10.1016/j.jpeds.2020.06.044
  51. Davies P, Evans C, Kanthimathinathan HK, Lillie J, Brierley J, Waters G, et al. Intensive care admissions of children with paediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 (PIMS-TS) in the UK: a multicentre observational study. Lancet Child Adolesc Health 2020;4:669-77. https://doi.org/10.1016/S2352-4642(20)30215-7
  52. Kwak JH, Lee SY, Choi JW; Korean Society of Kawasaki Disease. Clinical features, diagnosis, and outcomes of multisystem inflammatory syndrome in children associated with coronavirus disease 2019. Clin Exp Pediatr 2021;64:68-75. https://doi.org/10.3345/cep.2020.01900
  53. Radia T, Williams N, Agrawal P, Harman K, Weale J, Cook J, et al. Multisystem inflammatory syndrome in children & adolescents (MIS-C): a systematic review of clinical features and presentation. Paediatr Respir Rev 2021;38:51-7.
  54. Hoste L, Van Paemel R, Haerynck F. Multisystem inflammatory syndrome in children related to COVID-19: a systematic review. Eur J Pediatr 2021;180:2019-34. https://doi.org/10.1007/s00431-021-03993-5
  55. Lee KY, Han JW, Hong JH, Lee HS, Lee JS, Whang KT. Inflammatory processes in Kawasaki disease reach their peak at the sixth day of fever onset: laboratory profiles according to duration of fever. J Korean Med Sci 2004;19:501-4. https://doi.org/10.3346/jkms.2004.19.4.501
  56. Seo YM, Kang HM, Lee SC, Yu JW, Kil HR, Rhim JW, et al. Clinical implications in laboratory parameter values in acute Kawasaki disease for early diagnosis and proper treatment. Korean J Pediatr 2018;61:160-6. https://doi.org/10.3345/kjp.2018.61.5.160
  57. Han JW, Oh JH, Rhim JW, Lee KY. Correlation between elevated platelet count and immunoglobulin levels in the early convalescent stage of Kawasaki disease. Medicine (Baltimore) 2017;96:e7583. https://doi.org/10.1097/MD.0000000000007583
  58. Kobayashi T, Inoue Y, Takeuchi K, Okada Y, Tamura K, Tomomasa T, et al. Prediction of intravenous immunoglobulin unresponsiveness in patients with Kawasaki disease. Circulation 2006;113:2606-12. https://doi.org/10.1161/CIRCULATIONAHA.105.592865
  59. Hwang JY, Lee KY, Rhim JW, Youn YS, Oh JH, Han JW, et al. Assessment of intravenous immunoglobulin non-responders in Kawasaki disease. Arch Dis Child 2011;96:1088-90. https://doi.org/10.1136/adc.2010.184101
  60. Han HY, Park KC, Yang EA, Lee KY. Macrolide-resistant and macrolide-sensitive Mycoplasma pneumoniae pneumonia in children treated using early corticosteroids. J Clin Med. 2021;10:1309. https://doi.org/10.3390/jcm10061309
  61. Matthay MA, Zemans RL, Zimmerman GA, Arabi YM, Beitler JR, Mercat A, et al. Acute respiratory distress syndrome. Nat Rev Dis Primers 2019;5:18. https://doi.org/10.1038/s41572-019-0069-0
  62. Lee KY. Pneumonia, acute respiratory distress syndrome, and early immune-modulator therapy. Int J Mol Sci 2017;18:388. https://doi.org/10.3390/ijms18020388
  63. Lee KY, Rhim JW, Kang JH. Hyperactive immune cells (T cells) may be responsible for acute lung injury in influenza virus infections: a need for early immune-modulators for severe cases. Med Hypotheses 2011;76:64-9. https://doi.org/10.1016/j.mehy.2010.08.032
  64. Borczuk AC. Pulmonary pathology of COVID-19: a review of autopsy studies. Curr Opin Pulm Med 2021;27:184-92. https://doi.org/10.1097/MCP.0000000000000761
  65. Malloy S, Wang Y. A review on histotechnology practices in COVID-19 pathology investigations. J Histotechnol 2020;43:153-8. https://doi.org/10.1080/01478885.2020.1779484
  66. Lee KY. New insights for febrile urinary tract infection (acute pyelonephritis) in children. Child Kidney Dis 2016;20:37-44. https://doi.org/10.3339/jkspn.2016.20.2.37
  67. Komarova N, Barkova D, Kuznetsov A. Implementation of high-throughput sequencing (HTS) in aptamer selection technology. Int J Mol Sci 2020;21:8774. https://doi.org/10.3390/ijms21228774
  68. Kim SY, Yi DY. Components of human breast milk: from macronutrient to microbiome and microRNA. Clin Exp Pediatr 2020;63:301-9. https://doi.org/10.3345/cep.2020.00059
  69. De Filippo C, Di Paola M, Giani T, Tirelli F, Cimaz R. Gut microbiota in children and altered profiles in juvenile idiopathic arthritis. J Autoimmun 2019;98:1-12. https://doi.org/10.1016/j.jaut.2019.01.001
  70. Jamshidi P, Hasanzadeh S, Tahvildari A, Farsi Y, Arbabi M, Mota JF, et al. Is there any association between gut microbiota and type 1 diabetes? A systematic review. Gut Pathog 2019;11:49. https://doi.org/10.1186/s13099-019-0332-7
  71. Esposito S, Polinori I, Rigante D. The gut microbiota-host partnership as a potential driver of Kawasaki syndrome. Front Pediatr 2019;7:124. https://doi.org/10.3389/fped.2019.00124
  72. Kaneko K, Akagawa S, Akagawa Y, Kimata T, Tsuji S. Our evolving understanding of Kawasaki disease pathogenesis: role of the gut microbiota. Front Immunol 2020;11:1616. https://doi.org/10.3389/fimmu.2020.01616
  73. Rhim JW, Kang HM, Han JW, Lee KY. A presumed etiology of Kawasaki disease based on epidemiological comparison with infectious or immune-mediated diseases. Front Pediatr 2019;7:202. https://doi.org/10.3389/fped.2019.00202
  74. Onouchi Y. The genetics of Kawasaki disease. Int J Rheum Dis 2018;21:26-30. https://doi.org/10.1111/1756-185X.13218
  75. Wopereis H, Oozeer R, Knipping K, Belzer C, Knol J. The first thousand days: intestinal microbiology of early life: establishing a symbiosis. Pediatr Allergy Immunol 2014;25:428-38. https://doi.org/10.1111/pai.12232
  76. Fallani M, Young D, Scott J, Norin E, Amarri S, Adam R, et al. Intestinal microbiota of 6-week-old infants across Europe: geographic influence beyond delivery mode, breast-feeding, and antibiotics. J Pediatr Gastroenterol Nutr 2010;51:77-84. https://doi.org/10.1097/MPG.0b013e3181d1b11e
  77. Harusato A, Chassaing B. Insights on the impact of diet-mediated microbiota alterations on immunity and diseases. Am J Transplant 2018;18:550-5. https://doi.org/10.1111/ajt.14477
  78. Korpela K, de Vos WM. Antibiotic use in childhood alters the gut microbiota and predisposes to overweight. Microb Cell 2016;3:296-8. https://doi.org/10.15698/mic2016.07.514
  79. Karthikeyan G, Guilherme L. Acute rheumatic fever. Lancet 2018;392:161-74. https://doi.org/10.1016/S0140-6736(18)30999-1
  80. Roberts AL, Connolly KL, Kirse DJ, Evans AK, Poehling KA, Peters TR, et al. Detection of group A Streptococcus in tonsils from pediatric patients reveals high rate of asymptomatic streptococcal carriage. BMC Pediatr 2012;12:3. https://doi.org/10.1186/1471-2431-12-3
  81. Osterlund A, Engstrand L. An intracellular sanctuary for Streptococcus pyogenes in human tonsillar epithelium: studies of asymptomatic carriers and in vitro cultured biopsies. Acta Otolaryngol 1997;117:883-8. https://doi.org/10.3109/00016489709114219
  82. Di Renzo L, Gualtieri P, Pivari F, Soldati L, Attina A, Cinelli G, et al. Eating habits and lifestyle changes during COVID-19 lockdown: an Italian survey. J Transl Med 2020;18:229. https://doi.org/10.1186/s12967-020-02399-5
  83. Ruiz-Roso MB, de Carvalho Padilha P, Mantilla-Escalante DC, Ulloa N, Brun P, Acevedo-Correa D, et al. COVID-19 confinement and changes of adolescent's dietary trends in Italy, Spain, Chile, Colombia and Brazil. Nutrients 2020;12:1807. https://doi.org/10.3390/nu12061807
  84. Zindel J, Kubes P. DAMPs, PAMPs, and LAMPs in immunity and sterile inflammation. Annu Rev Pathol 2020;15:493-518. https://doi.org/10.1146/annurev-pathmechdis-012419-032847
  85. Gong T, Liu L, Jiang W, Zhou R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat Rev Immunol 2020;20:95-112. https://doi.org/10.1038/s41577-019-0215-7
  86. Vabret N, Britton GJ, Gruber C, Hegde S, Kim J, Kuksin M, et al. Immunology of COVID-19: current state of the science. Immunity 2020;52:910-41. https://doi.org/10.1016/j.immuni.2020.05.002
  87. Perico L, Benigni A, Casiraghi F, Ng LF, Renia L, Remuzzi G. Immunity, endothelial injury and complement-induced coagulopathy in COVID-19. Nat Rev Nephrol 2021;17:46-64. https://doi.org/10.1038/s41581-020-00357-4
  88. Alkam T, Nabeshima T. Molecular mechanisms for nicotine intoxication. Neurochem Int 2019;125:117-26. https://doi.org/10.1016/j.neuint.2019.02.006
  89. Jesulola E, Micalos P, Baguley IJ. Understanding the pathophysiology of depression: From monoamines to the neurogenesis hypothesis model: are we there yet? Behav Brain Res 2018;341:79-90. https://doi.org/10.1016/j.bbr.2017.12.025
  90. van der Poll T, Opal SM. Pathogenesis, treatment, and prevention of pneumococcal pneumonia. Lancet 2009;374:1543-56. https://doi.org/10.1016/S0140-6736(09)61114-4
  91. Short KR, Kroeze EJ, Fouchier RA, Kuiken T. Pathogenesis of influenza induced acute respiratory distress syndrome. Lancet Infect Dis 2014;14:57-69. https://doi.org/10.1016/S1473-3099(13)70286-X
  92. Ulrich H, Pillat MM, Tarnok A. Dengue fever, COVID-19 (SARS-CoV-2), and antibody-dependent enhancement (ADE): a perspective. Cytometry A 2020;97:662-7. https://doi.org/10.1002/cyto.a.24047
  93. Kang HM, Choi EH, Kim YJ. Updates on the coronavirus disease 2019 vaccine and consideration in children. Clin Exp Pediatr 2021;64:328-38. https://doi.org/10.3345/cep.2021.00696
  94. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med 2020;383:2603-15. https://doi.org/10.1056/NEJMoa2034577
  95. Weisberg SP, Connors TJ, Zhu Y, Baldwin MR, Lin WH, Wontakal S, et al. Distinct antibody responses to SARS-CoV-2 in children and adults across the COVID-19 clinical spectrum. Nat Immunol 2021;22:25-31. https://doi.org/10.1038/s41590-020-00826-9
  96. Yang HS, Costa V, Racine-Brzostek SE, Acker KP, Yee J, Chen Z, et al. Association of age with SARS-CoV-2antibody response. JAMA Netw Open 2021;4:e214302. https://doi.org/10.1001/jamanetworkopen.2021.4302
  97. Dinnes J, Deeks JJ, Berhane S, Taylor M, Adriano A, Davenport C, et al. Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection. Cochrane Database Syst Rev 2021;3:CD013705.
  98. Caruana G, Croxatto A, Coste AT, Opota O, Lamoth F, Jaton K, et al. Diagnostic strategies for SARS-CoV-2 infection and interpretation of microbiological results. Clin Microbiol Infect 2020;26:1178-82. https://doi.org/10.1016/j.cmi.2020.06.019
  99. Arevalo-Rodriguez I, Buitrago-Garcia D, Simancas-Racines D, Zambrano- Achig P, Campo RD, Ciapponi A, et al. False-negative results of initial RT-PCR assays for COVID-19: a systematic review. PLoS One 2020;15:e0242958. https://doi.org/10.1371/journal.pone.0242958
  100. Jeon HE, Kang HM, Yang EA, Han HY, Han SB, Rhim JW, et al. Early confirmation of Mycoplasma pneumoniae infection by two short-term serologic IgM examination. Diagnostics (Basel) 2021;11:353. https://doi.org/10.3390/diagnostics11020353
  101. Sun B, Feng Y, Mo X, Zheng P, Wang Q, Li P, et al. Kinetics of SARS-CoV-2 specific IgM and IgG responses in COVID-19 patients. Emerg Microbes Infect 2020;9:940-8. https://doi.org/10.1080/22221751.2020.1762515
  102. Deeks JJ, Dinnes J, Takwoingi Y, Davenport C, Spijker R, Taylor-Phillips S, et al. Antibody tests for identification of current and past infection with SARS-CoV-2. Cochrane Database Syst Rev 2020;6:CD013652.
  103. Huang AT, Garcia-Carreras B, Hitchings MDT, Yang B, Katzelnick LC, Rattigan SM, et al. A systematic review of antibody mediated immunity to coronaviruses: kinetics, correlates of protection, and association with severity. Nat Commun 2020;11:4704. https://doi.org/10.1038/s41467-020-18450-4
  104. Ko JH, Muller MA, Seok H, Park GE, Lee JY, Cho SY, et al. Serologic responses of 42 MERS-coronavirus-infected patients according to the disease severity. Diagn Microbiol Infect Dis 2017;89:106-11. https://doi.org/10.1016/j.diagmicrobio.2017.07.006
  105. Youn YS, Lee KY, Hwang JY, Rhim JW, Kang JH, Lee JS, et al. Difference of clinical features in childhood Mycoplasma pneumoniae pneumonia. BMC Pediatr 2010;10:48. https://doi.org/10.1186/1471-2431-10-48
  106. Zilla M, Wheeler BJ, Keetch C, Mitchell G, McBreen J, Wells A, et al. Variable performance in 6 commercial SARS-CoV-2 antibody assays may affect convalescent plasma and seroprevalence screening. Am J Clin Pathol 2021;155:343-53. https://doi.org/10.1093/ajcp/aqaa228
  107. Galipeau Y, Greig M, Liu G, Driedger M, Marc-Andre Langlois MA. Humoral responses and serological assays in SARS-CoV-2 infections. Front Immunol 2020;11:610688. https://doi.org/10.3389/fimmu.2020.610688
  108. Lee SM, Kim IS, Lim S, Lee SJ, Kim WJ, Shin KH, et al. Comparison of serologic response of hospitalized COVID-19 patients using 8 immunoassays. J Korean Med Sci 2021;36:e64. https://doi.org/10.3346/jkms.2021.36.e64
  109. Miller JM, Binnicker MJ, Campbell S, Carroll KC, Chapin KC, Gilligan PH, et al. A guide to utilization of the microbiology laboratory for diagnosis of infectious diseases: 2018 update by the Infectious Diseases Society of America and the American Society for Microbiology. Clin Infect Dis 2018;67:e1-94. https://doi.org/10.1093/cid/ciy381
  110. Shenoy S. SARS-CoV-2 (COVID-19), viral load and clinical outcomes; lessons learned one year into the pandemic: a systematic review. World J Crit Care Med 2021;10:132-50. https://doi.org/10.5492/wjccm.v10.i4.132
  111. Lifshitz MS. Preanalysis. In: McPherson RA, Pincus MR, editors. Henry's clinical diagnosis and management by laboratory methods. 23rd ed. Amsterdam: Elsevier Health Sciences; 2017.
  112. RECOVERY Collaborative Group, Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, et al. Dexamethasone in hospitalized patients with COVID-19. N Engl J Med 2021;384:693-704. https://doi.org/10.1056/NEJMoa2021436
  113. The WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group, Sterne JA, Murthy S, Diaz JV, Slutsky AS, Villar J, et al. Association between administration of systemic corticosteroids and mortality among critically ill patients with COVID-19. A meta-analysis. JAMA 2020;324:1330-41. https://doi.org/10.1001/jama.2020.17023
  114. Saleem A, Akhtar MF, Haris M, Abdel-Daim MM. Recent updates on immunological, pharmacological, and alternative approaches to combat COVID-19. Inflammopharmacology 2021;29:1331-46. https://doi.org/10.1007/s10787-021-00850-7
  115. Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet 2020;395:473-5. https://doi.org/10.1016/s0140-6736(20)30317-2
  116. World Health Organization. Corticosteroids for COVID-19. Living Guidance [Internet]. Geneva (Switzerland): World Health Organization; 2020 Sep [cited 2020 Sep 30]. Available from: https://www.who.int/publications/i/item/WHO-2019-nCoV-Corticosteroids-2020.1.
  117. Stockman LJ, Bellamy R, Garner P. SARS: systematic review of treatment effects. PLoS Med 2006;3:e343. https://doi.org/10.1371/journal.pmed.0030343
  118. Lansbury L, Rodrigo C, Leonardi-Bee J, Nguyen-Van-Tam J, Lim WS. Corticosteroids as adjunctive therapy in the treatment of influenza. Cochrane Database Syst Rev 2019;2:CD010406.
  119. Kil HR, Lee JH, Lee KY, Rhim JW, Youn YS, Kang JH. Early corticosteroid treatment for severe pneumonia caused by 2009 H1N1 influenza virus. Crit Care 2011;15:413. https://doi.org/10.1186/cc10082
  120. Yang EA, Kang HM, Rhim JW, Kang JH, Lee KY. Early corticosteroid therapy for Mycoplasma pneumoniae pneumonia irrespective of used antibiotics in children. J Clin Med 2019;8:E726.
  121. Lee KY, Rhim JW, Kang JH. Early preemptive immune modulators (corticosteroids) for severe pneumonia patients infected with SARS-CoV-2. Clin Exp Pediatr 2020;63:117-8. https://doi.org/10.3345/cep.2020.00290
  122. Song MS. Predictors and management of intravenous immunoglobulinresistant Kawasaki disease. Korean J Pediatr 2019;62:119-23. https://doi.org/10.3345/kjp.2019.00150
  123. Dove ML, Jaggi P, Kelleman M, Abuali M, Ang JY, Ballan W, et al. Multisystem inflammatory syndrome in children: survey of protocols for early hospital evaluation and management. J Pediatr 2021;229:33-40. https://doi.org/10.1016/j.jpeds.2020.10.026
  124. Ouldali N, Toubiana J, Antona D, Javouhey E, Madhi F, Lorrot M, et al. Association of intravenous immunoglobulins plus methylprednisolone vs immunoglobulins alone with course of fever in multisystem inflammatory syndrome in children. JAMA 2021;325:855-64. https://doi.org/10.1001/jama.2021.0694
  125. Son MBF, Murray N, Friedman K, Young CC, Newhams MM, Feldstein LR, et al. Multisystem inflammatory syndrome in children: initial therapy and outcomes. N Engl J Med 2021;385:23-34. https://doi.org/10.1056/NEJMoa2102605
  126. Henderson LA, Canna SW, Friedman KG, Gorelik M, Lapidus SK, Bassiri H, et al. American College of Rheumatology clinical guidance for multisystem inflammatory syndrome in children associated with SARS-CoV-2 and hyperinflammation in pediatric COVID-19: version 2. Arthritis Rheumatol 2021;73:e13-29.