Acknowledgement
The authors would like to acknowledge the support provided by the Deanship of Scientific Research (DSR) at King Fahd University of Petroleum & Minerals (KFUPM), Saudi Arabia, for funding this work through Project No. DF181032. The support provided by the Department of Civil and Environmental Engineering is also acknowledged.
References
- Abdulrazzaq, M.A., Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Compos. Struct., 35(1), 147-157. https://doi.org/10.12989/scs.2020.35.1.147.
- Adiyaman, G., Yaylaci, M. and Birinci, A. (2015), "Analytical and finite element solution of a receding contact problem", Struct. Eng. Mech., 54(1), 69-85. http://dx.doi.org/10.12989/sem.2015.54.1.069.
- Akbas, S.D. (2015), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., 19(6), 1421-1447. https://doi.org/10.12989/scs.2015.19.6.1421.
- Al-Furjan, M.S.H., Mohammadgholiha, M., Alarifi, I.M., Habibi, M. and Safarpour, H. (2020), "On the phase velocity simulation of the multi curved viscoelastic system via an exact solution framework", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-020-01152-2.
- Al-Furjan, M.S.H., Oyarhossein, M.A., Habibi, M., Safarpour, H. and Jung, D.W. (2020), "Wave propagation simulation in an electrically open shell reinforced with multi-phase nanocomposites", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-020-01167-9.
- Allahkarami, F., Tohidi, H., Dimitri, R. and Tomabene, F. (2020), "Dynamic stability of bi-directional functionally graded porous cylindrical shells embedded in an elastic foundation", Appl. Sci., 10(4), 1345. https://doi.org/10.3390/app10041345.
- Alnujaie, A., Akbas, S.D., Eltaher, M.A. and Assie, A. (2021), "Forced vibration of a functionally graded porous beam resting on viscoelastic foundation", Geomech. Eng., 24(1), 91-103. https://doi.org/10.12989/gae.2021.24.1.091.
- AlSaid-Alwan, S.H.H. and Avcar, M. (2020), "Analytical solution of free vibration of FG beam utilizing different types of beam theories: A comparative study", Comput. Concr., 26(3), 285-292. https://doi.org/10.12989/CAC.2020.26.3.285.
- Ansari, R., Oskouie, M.F., Roghani, M. and Rouhi, H. (2021), "Nonlinear analysis of laminated FG-GPLRC beams resting on an elastic foundation based on the two-phase stress-driven nonlocal model", Acta Mech., 232, 1-17. https://doi.org/10.1007/s00707-021-02935-4.
- Batou, B., Nebab, M., Bennai, R., Atmane, H., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699.
- Bisheh, H. and Civalek, O. (2020), "Vibration of smart laminated carbon nanotube-reinforced composite cylindrical panels on elastic foundations in hygrothermal environments", Thin-Walled Struct., 155, 106945. https://doi.org/10.1016/j.tws.2020.106945.
- Chen, Y.Z. (2021), "A novel numerical solution for a functionally graded hollow cylinder with arbitrary elastic property along the radial direction", Int. J. Press. Vessel., 191, 104301. https://doi.org/10.1016/j.ijpvp.2021.104301.
- Cuong-Le, T., Nguyen, K.D., Nguyen-Trong, N., Khatir, S., Nguyen-Xuan, H. and Abdel-Wahab, M. (2021), "A three-dimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porous-cellular materials using IGA", Compos. Struct., 259, 113216. https://doi.org/10.1016/j.compstruct.2020.113216.
- Dehghan, M., Ebrahimi, F. and Vinyas, M., (2019), "Wave dispersion characteristics of fluid-conveying magneto-electro-elastic nanotubes", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-019-00790-5.
- Ebrahimi, F. and Seyfi, A., (2020), "Studying propagation of wave in metal foam cylindrical shells with graded porosities resting on variable elastic substrate", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-020-01069-w.
- Ebrahimi, F., Seyfi, A., Nouraei, M. and Haghi, P. (2021), "Influence of magnetic field on the wave propagation response of functionally graded (FG) beam lying on elastic foundation in thermal environment", Waves Random and Complex Media, 1-19. https://doi.org/10.1080/17455030.2020.1847359.
- Elmossouess, B., Kebdani, S., Bouiadjra, M.B. and Tounsi, A. (2017), "A novel and simple HSDT for thermal buckling response of functionally graded sandwich plates", Struct. Eng. Mech., 62(4), 401-415. https://doi.org/10.12989/SEM.2017.62.4.401.
- Esen, I., Eltaher, M. A. and Abdelrahman, A.A. (2021), "Vibration response of symmetric and sigmoid functionally graded beam rested on elastic foundation under moving point mass", Mech. Based Des. Struct. Mach., 1-25. https://doi.org/10.1080/15397734.2021.1904255.
- Fan, L., Sahmani, S. and Safaei, B. (2021), "Couple stress-based dynamic stability analysis of functionally graded composite truncated conical microshells with magnetostrictive facesheets embedded within nonlinear viscoelastic foundations", Eng. Comput., 37(2), 1635-1655. https://doi.org/10.1007/s00366-020-01182-w.
- Faroughi, S., Rahmani, A. and Friswell, M.I. (2020), "On wave propagation in two-dimensional functionally graded porous rotating nanobeams using a general nonlocal higher-order beam model", Appl. Math. Model., 80, 169-190. https://doi.org/https://doi.org/10.1016/j.apm.2019.11.040.
- Gao, W., Qin, Z. and Chu, F. (2020), "Wave propagation in functionally graded porous plates reinforced with graphene platelets", Aerosp. Sci. Technol., 102, 105860. https://doi.org/10.1016/j.ast.2020.105860.
- Ghassabi, M., Zarastvand, M.R. and Talebitooti, R. (2020), "Investigation of state vector computational solution on modeling of wave propagation through functionally graded nanocomposite doubly curved thick structures", Eng. Comput., 36(4), 1417-1433. https://doi.org/10.1007/s00366-019-00773-6.
- Hadji, L. and Avcar, M. (2020), "Free vibration analysis of FG porous sandwich plates under various boundary conditions", J. Appl. Comput. Mech. https://doi.org/10.22055/JACM.2020.35328.2628.
- Hussain, M., Naeem, M.N. and Tounsi, A., (2020), "Response of orthotropic Kelvin modeling for single-walled carbon nanotubes: Frequency analysis", Adv. Nano Res., 8(3), 229-244. https://doi.org/10.12989/anr.2020.8.3.229.
- Jena, S.K., Chakraverty, S. and Malikan, M. (2020), "Application of shifted Chebyshev polynomial-based Rayleigh-Ritz method and Navier's technique for vibration analysis of a functionally graded porous beam embedded in Kerr foundation", Eng. Comput., 1-21. https://doi.org/10.1007/s00366-020-01018-7.
- Karami, B. and Janghorban, M. (2019a), "A new size-dependent shear deformation theory for free vibration analysis of functionally graded/anisotropic nanobeams", Thin-Walled Struct., 143, 106227. https://doi.org/10.1016/j.tws.2019.106227.
- Karami, B. and Janghorban, M. (2019b), "A new size-dependent shear deformation theory for wave propagation analysis of triclinic nanobeams", Steel Compos. Struct., 32(2), 213-223. https://doi.org/10.12989/scs.2019.32.2.213.
- Karami, B., Gheisari, P., Nazemosadat, S.M.R., Akbari, P., Shahsavari, D. and Naghizadeh, M. (2020), "Elastic wave characteristics of graphene nanoplatelets reinforced composite nanoplates", Struct. Eng. Mech., 74(6), 809-819. https://doi.org/10.12989/sem.2020.74.6.809.
- Karami, B., Janghorban, M. and Li, L. (2018), "On guided wave propagation in fully clamped porous functionally graded nanoplates", Acta Astronaut., 143, 380-390. https://doi.org/10.1016/j.actaastro.2017.12.011.
- Karami, B., Janghorban, M. and Rabczuk, T. (2019), "Static analysis of functionally graded anisotropic nanoplates using nonlocal strain gradient theory", Compos. Struct., 227, 111249. https://doi.org/10.1016/j.compstruct.2019.111249.
- Karami, B., Shahsavari, D., Janghorban, M., Dimitri, R. and Tomabene, F. (2019), "Wave propagation of porous nanoshells", Nanomater., 9(1). https://doi.org/10.3390/nano9010022.
- Khatir, S., Tiachacht, S., Le Thanh, C., Ghandourah, E., Mirjalili, S. and Wahab, M.A. (2021), "An improved artificial neural network using arithmetic optimization algorithm for damage assessment in FGM composite plates", Compos. Struct., 273, 114287. https://doi.org/10.1016/j.compstruct.2021.114287.
- Khatir, S., Tiachacht, S., Thanh, C.L., Bui, T.Q. and Wahab, M. A. (2019), "Damage assessment in composite laminates using ANN-PSO-IGA and Cornwell indicator", Compos. Struct., 230, 111509. https://doi.org/10.1016/j.compstruct.2019.111509.
- Li, M., Soares, C.G. and Yan, R. (2021), "Free vibration analysis of FGM plates on Winkler/Pasternak/Kerr foundation by using a simple quasi-3D HSDT", Compos. Struct., 264, 113643. https://doi.org/10.1016/j.compstruct.2021.113643.
- Liang, C. and Wang, Y.Q. (2020), "A quasi-3D trigonometric shear deformation theory for wave propagation analysis of FGM sandwich plates with porosities resting on viscoelastic foundation", Compos. Struct., 247, 112478. https://doi.org/10.1016/j.compstruct.2020.112478.
- Liang, X., Wang, Z., Wang., L. and Liu, G. (2014), "Semi-analytical solution for three-dimensional transient response of functionally graded annular plate on a two parameter viscoelastic foundation", J. Sound Vib., 333(12), 2649-2663. https://doi.org/10.1016/j.jsv.2014.01.021.
- Liu, F. and Li, L. (2020), "Study on the propagation mechanism of stress wave in underground mining", Comput. Concr., 25(2), 145-154. https://doi.org/10.12989/cac.2020.25.2.145.
- Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of FGM beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427.
- Nejadi, M.M. and Mohammadimehr, M. (2020), "Analysis of a functionally graded nanocomposite sandwich beam considering porosity distribution on variable elastic foundation using DQM: Buckling and vibration behaviors", Comput. Concr., 25(3), 215-224. https://doi.org/10.12989/cac.2020.25.3.215.
- Nguyen, Q.H., Nguyen, L.B. and Nguyen, H.B. (2020), "A three-variable high order shear deformation theory for isogeometric free vibration, buckling and instability analysis of FG porous plates reinforced by graphene platelets", Compos. Struct., 112321. https://doi.org/10.1016/j.compstruct.2020.112321.
- Saadatmorad, M., Jafari-Talookolaei, R.A., Pashaei, M.H. and Khatir, S. (2021), "Damage detection on rectangular laminated composite plates using wavelet based convolutional neural network technique", Compos. Struct., 278, 114656. https://doi.org/10.1016/j.compstruct.2021.114656.
- Salah, F., Boucham, B., Bourada, F., Benzair, A. Bousahla, A.A. and Tounsi, A. (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel Compos. Struct., 33(6), 805-822. https://doi.org/10.12989/scs.2019.33.6.805.
- Shahsavari, H., Talebitooti, R. and Kornokar, M. (2021), "Analysis of wave propagation through functionally graded porous cylindrical structures considering the transfer matrix method", Thin-Walled Struct., 159, 107212. https://doi.org/10.1016/j.tws.2020.107212.
- Shan, W., Deng, Z., Zhong, H., Mo, H., Han, Z., Yang, Z. and Liu, P. (2020), "Propagation characteristics of longitudinal wave, shear wave and bending wave in porous circular nanoplates", Struct. Eng. Mech., 76(4), 551-559. https://doi.org/10.12989/sem.2020.76.4.551.
- She, G.L. (2020), "Wave propagation of FG polymer composite nanoplates reinforced with GNPs", Steel Compos. Struct, 37(1), 27-35. https://doi.org/10.12989/scs.2020.37.1.027.
- Singh, S.J. and Harsha, S.P. (2019), "Exact solution for free vibration and buckling of sandwich S-FGM plates on pasternak elastic foundation with various boundary conditions", Int. J. Struct. Stab. Dyn., 19(03), 1950028. https://doi.org/10.1142/S0219455419500287.
- Sobhy, M. (2016), "An accurate shear deformation theory for vibration and buckling of FGM sandwich plates in hygrothermal environment", Int. J. Mech. Sci., 110. https://doi.org/10.1016/j.ijmecsci.2016.03.003.
- Sofiyev, A.H., Zerin, Z. and Kuruoglu, N. (2020), "Dynamic behavior of FGM viscoelastic plates resting on elastic foundations", Acta Mech., 231(1), 1-17. https://doi.org/10.1007/s00707-019-02502-y.
- Thanh, C.L., Nguyen, T.N., Vu, T.H., Khatir, S. and Abdel Wahab, M. (2020), "A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate", Eng. Comput., https://doi.org/10.1007/s00366-020-01154-0.
- Ton-That, H.L., Nguyen-Van, H. and Chau-Dinh, T. (2021), "A novel quadrilateral element for analysis of functionally graded porous plates/shells reinforced by graphene platelets", Arch. Appl. Mech., 1-32. https://doi.org/10.1007/s00419-021-01893-6.
- Van Vinh, P. (2021a), "Deflections, stresses and free vibration analysis of bi-functionally graded sandwich plates resting on Pasternak's elastic foundations via a hybrid quasi-3D theory", Mech. Based Des. Struct. Mach., 1-32. https://doi.org/10.1080/15397734.2021.1894948.
- Van Vinh, P. (2021b), "Finite element analysis of functionally graded sandwich plates with porosity via a new hyperbolic shear deformation theory", Def. Technol. https://doi.org/10.1016/j.dt.2021.03.006.
- Vinyas, M. (2020), "On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electromagnetic conditions using HSDT", Compos. Struct., 240, 112044. https://doi.org/10.1016/j.compstruct.2020.112044.
- Yaylaci, E. U., Yaylaci, M., Olmez, H. and Birinci, A. (2020), "Artificial neural network calculations for a receding contact problem", Comput. Concr., 25(6), 551-563. https://doi.org/10.12989/sem.2015.54.1.069.
- Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech. An Int. J., 57(6), 1143-1156. https://doi.org/10.12989/sem.2016.57.6.1143.
- Yaylaci, M. and Birinci, A. (2013), "The receding contact problem of two elastic layers supported by two elastic quarter planes", Struct. Eng. Mech, 48(2), 241-255. https://doi.org/10.12989/sem.2013.48.2.241.
- Yaylaci, M. and Birinci, A. (2015), "Analytical solution of a contact problem and comparison with the results from FEM", Struct. Eng. Mech., 54(4), 607-622. https://doi.org/10.12989/sem.2015.54.4.607.
- Yaylaci, M., Adiyaman, G., Oner, E. and Birinci, A. (2020), "Examination of analytical and finite element solutions regarding contact of a functionally graded layer", Struct. Eng. Mech., 76(3), 325-336. https://doi.org/10.12989/sem.2020.76.3.325.
- Yaylaci, M., Adiyaman, G., Oner, E. and Birinci, A. (2021), "Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM", Comput. Concr., 27(3), 199-210. https://doi.org/10.12989/cac.2021.27.3.199.
- Yaylaci, M., Eyuboglu, A., Adiyaman, G., Yaylaci, E.U., Oner, E. and Birinci, A. (2021), "Assessment of different solution methods for receding contact problems in functionally graded layered mediums", Mech. Mater., 154, 103730. https://doi.org/10.1016/j.mechmat.2020.103730.
- Yaylaci, M., Yayli, M., Yaylaci, E.U., Olmez, H. and Birinci, A. (2021), "Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron", Struct. Eng. Mech., 78(5), 585-597. https://doi.org/10.12989/sem.2021.78.5.585.
- Zeighampour, H., Beni, Y.T. and Dehkordi, M.B. (2018), "Wave propagation in viscoelastic thin cylindrical nanoshell resting on a visco-Pasternak foundation based on nonlocal strain gradient theory", Thin-Walled Struct., 122, 378-386. https://doi.org/10.1016/j.tws.2017.10.037.
- Zenzen, R., Khatir, S., Belaidi, I., Le Thanh, C. and Wahab, M.A. (2020), "A modified transmissibility indicator and Artificial Neural Network for damage identification and quantification in laminated composite structures", Compos. Struct., 248, 112497. https://doi.org/10.1016/j.compstruct.2020.112497.