DOI QR코드

DOI QR Code

Wave propagation and vibration of FG pipes conveying hot fluid

  • Zhang, Yi-Wen (College of Mechanical and Vehicle Engineering, Chongqing University) ;
  • She, Gui-Lin (College of Mechanical and Vehicle Engineering, Chongqing University)
  • 투고 : 2021.05.11
  • 심사 : 2021.11.24
  • 발행 : 2022.02.10

초록

The existing researches on the dynamics of the fluid-conveying pipes only focus on stability and vibration problems, and there is no literature report on the wave propagation of the fluid-conveying pipes. Therefore, the purpose of this paper is to explore the propagation characteristics of longitudinal and flexural waves in the fluid-conveying pipes. First, it is assumed that the material properties of the fluid-conveying pipes vary based on a power function of the thickness. In addition, it is assumed that the material properties of both the fluid and the pipes are closely depended on temperature. Using the Euler-Bernoulli beam equation and based on the linear theory, the motion equations considering the thermal-mechanical-fluid coupling is derived. Then, the exact expressions of phase velocity and group velocity of longitudinal waves and bending waves in the fluid-conveying pipes are obtained by using the eigenvalue method. In addition, we also studied the free vibration frequency characteristics of the fluid-conveying pipes. In the numerical analysis, we successively studied the influence of temperature, functional gradient index and liquid velocity on the wave propagation and vibration problems. It is found that the temperature and functional gradient exponent decrease the phase and group velocities, on the contrary, the liquid flow velocity increases the phase and group velocities. However, for vibration problems, temperature, functional gradient exponent parameter, and fluid velocity all reduce the natural frequency.

키워드

참고문헌

  1. Alnujaie, A., Akbas, S.D., Eltaher, M.A. and Assie, A.E. (2021a), "Forced vibration of a functionally graded porous beam resting on viscoelastic foundation", Geomech. Eng., 24(1), 91-103. http://dx.doi.org/10.12989/gae.2021.24.1.091.
  2. Alnujaie, A., Akbas, S.D., Eltaher, M.A. and Assie, A.E. (2021b), "Damped forced vibration analysis of layered functionally graded thick beams with porosity", Smart Struct. Syst., 27(4), 679-689. http://dx.doi.org/10.12989/sss.2021.27.4.679.
  3. Akbas, S.D., Bashiri, A.H., Assie, A.E. and Eltaher, M.A. (2021), "Dynamic analysis of thick beams with functionally graded porous layers and viscoelastic support", J. Vib. Control, 27(13-14), 1644-1655. http://dx.doi.org/10.1177/1077546320947302.
  4. Cao, J., Liu, Y. and Liu, W. (2018), "The effect of two cases of temperature distributions on vibration of fluid-conveying functionally graded thin-walled pipes", J. Strain Anal. Eng. Des., 53(5), 030932471877059, 324-331. http://dx.doi.org/10.1177/0309324718770594.
  5. Civalek, O., Uzun, B., Yayli, M.O. and Akgoz, B. (2020a), "Size dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method", Eur. Phys. J. Plus, 135, 381. https://doi.org/10.1140/epjp/s13360--020020--0038500385-w.
  6. Civalek, O., Dastjerdi, S., Akbas, S.D. and Akgoz, B., (2020b), "Vibration analysis of carbon nanotube-reinforced composite nicrobeams", Mathem. Meth. Appl. Sci., https://doi.org/10.1002/mma.7069.
  7. Dai, J., Liu, Y., Liu, H., Miao, C. and Tong, G. (2019), "A parametric study on thermo-mechanical vibration of axially functionally graded material pipe conveying fluid", Int. J. Mech. Mater. Des., 15(3), 715-726. http://dx.doi.org/10.1007/s10999-018-09439-5.
  8. Dehrouyeh-Semnani, A.M., Dehdashti, E., Yazdi, M. and Nikkhah-Bahrami, M. (2019), "Nonlinear thermo-resonant behavior of fluid-conveying FG pipes", Int. J. Eng. Sci., 144, 103141. http://dx.doi.org/10.1016/j.ijengsci.2019.103141.
  9. Demir, C. and Civalek, O. (2017), "On the analysis of microbeams", Int. J. Eng. Sci., 121, 14-33. https://doi.org/10.1016/j.ijengsci.2017.08.016.
  10. Ding, H.X. and She, G.L. (2021), "A higher-order beam model for the snap-buckling analysis of FG pipes conveying fluid", Struct. Eng. Mech., 80(1), 63-72. http://dx.doi.org/10.12989/sem.2021.80.1.063.
  11. Esen, I, Daikh, A.A. and Eltaher, M.A. (2021), "Dynamic response of nonlocal strain gradient FG nanobeam reinforced by carbon nanotubes under moving point load", Europ. Phys. J. Plus, 136 (4), 458. http://dx.doi.org/10.1140/epjp/s13360-021-01419-7.
  12. Ebrahimi, F. and Barati, M. (2017), "A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams", Compos. Struct., 159(1), 174-182. http://doi.org/10.1016/j.compstruct.2016.09.058.
  13. Faleh, N.M., Ahmed, R.A. and Fenjan, R.M. (2018), "On vibrations of porous FG nanoshells", Int. J. Eng. Sci., 133, 1-14. https://doi.org/10.1016/j.ijengsci.2018.08.007.
  14. Golmakani, M.E., Malikan, M. and Pour, S. G. (2021), "Bending analysis of functionally graded nanoplates based on a higherorder shear deformation theory using dynamic relaxation method", Continuum Mech. Thermodynamics, https://doi.org/10.1007/s00161-021-00995-4 .
  15. Hachemi, H., Bousahla, A.A., Kaci, A., Bourada, F., Tounsi, A., Benrahou, K., Tounsi, A., Al-Zahrani, M.M. and Mahmoud, S. R. (2021), "Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position", Steel Compos. Struct., 39(1), 51-64. https://doi.org/10.12989/scs.2021.39.1.051.
  16. Heshmati, M. (2020), "Influence of an eccentricity imperfection on the stability and vibration behavior of fluid-conveying functionally graded pipes", Ocean Eng., 203, 107192. http://dx.doi.org/10.1016/j.oceaneng.2020.107192.
  17. Hu, Y.J. and Zhu, W. (2018), "Vibration analysis of a fluidconveying curved pipe with an arbitrary undeformed configuration", Appl. Math. Model., 64, 624-642. http://dx.doi.org/10.1016/j.apm.2018.06.046.
  18. Jalaei, M.H. and Civalek, O. (2019), "On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam", Int. J. Eng. Sci., 143, 14-32. https://doi.org/10.1016/j.ijengsci.2019.06.013.
  19. Li, J., Deng, H. and Jiang, W. (2019), "Dynamic response and vibration suppression of a cantilevered pipe conveying fluid under periodic excitation", J. Vib. Control, 25(11), 1695-1705. http://dx.doi.org/10.1177/1077546319837789.
  20. Li, Y.D. and Yang, Y.R. (2017), "Vibration analysis of conveying fluid pipe via He's variational iteration method", Appl. Math. Model., 43, 409-420. http://dx.doi.org/10.1016/j.apm.2016.11.029.
  21. Lian, F., Yang, X.D., Zhang, W. and Qian, Y.J. (2018), "Nonlinear free vibration of spinning viscoelastic pipes conveying fluid", Int. J. Appl. Mech., 10(7), 1850076. http://dx.doi.org/10.1142/S175882511850076X.
  22. Liang, F., Yang, X.D., Qian, Y.J. and Zhang, W. (2018), "Transverse free vibration and stability analysis of spinning pipes conveying fluid", Int. J. Mech. Sci., 137, 195-204. http://dx.doi.org/10.1016/j.ijmecsci.2018.01.015.
  23. Lu, L., She, G.L. and Guo, X. (2021), "Size-dependent postbuckling analysis of graphene reinforced composite microtubes with geometrical imperfection", Int. J. Mech. Sci., 199, 106428. https://doi.org/10.1016/j.ijmecsci.2021.106428.
  24. Kirshenbaum, A.D., Cahill, J.A. and Grosse, A.V. (1961), "The density of liquid lead from the melting", J. Inorganic Nuclear Chemistry, 22(1-2), 33-38. https://doi.org/10.1016/0022-1902(61)80226-1.
  25. Malikan, M. and Eremeyev, V.A. (2021), "Effect of surface on the flexomagnetic response of ferroic composite nanostructures; nonlinear bending analysis", Compos. Struct., 271, 114179. https://doi.org/10.1016/j.compstruct.2021.114179.
  26. Malikan, M. and Eremeyev, V.A. (2020), "A new hyperbolic-polynomial higher-order elasticity theory for mechanics of thick FGM beams with imperfection in the material composition", Compos. Struct., 249, 112486. https://doi.org/10.1016/j.compstruct.2020.112486.
  27. Malikan, M., Wiczenbach, T. and Eremeyev, V.A. (2021), "Thermal buckling of functionally graded piezomagnetic micro-and nanobeams presenting the flexomagnetic effect", Continuum. Mech. Therm., https://doi.org/10.1007/s00161-021-01038-8.
  28. Melaibari, A., Khoshaim, A.B., Mohamed, S.A. and Eltaher, M.A. (2021), "Static stability and of symmetric and sigmoid functionally graded beam under variable axial load", Steel Compos. Struct., 35(5), 671-685. https://doi.org/10.12989/scs.2020.35.5.671.
  29. Meksi, A., Benyoucef, S., Sekkal, M., Bouiadjra, R.B., Selim, M. M., Tounsi, A. and Hussain, M. (2021), "Influence of micromechanical models on the bending response of bidirectional FG beams under linear, uniform, exponential and sinusoidal distributed loading", Steel Compos. Struct., 39(2), 215-228. https://doi.org/10.12989/scs.2021.39.2.215.
  30. Reddy, J.N. and Chin, C.D. (1998), "Thermomechanical analysis of functionally graded cylinders and plates", J. Thermal Stresses, 21(6), 593-626. https://doi.org/10.1080/01495739808956165.
  31. Rezaiee-Pajand, M., Sobhani, E. and Masoodi, A.R. (2021a), "Semi-analytical vibrational analysis of functionally graded carbon nanotubes coupled conical-conical shells", Thin-walled Struct., 159, 107272. https://doi.org/10.1016/j.tws.2020.107272.
  32. Rezaiee-Pajand, M., Sobhani, E. and Masoodi, A.R. (2021b), "Free vibration analysis of functionally graded hybrid matrix/fiber nanocomposite conical shells using multiscale method", Aeros. Sci. Technol., 105, 105998. https://doi.org/10.1016/j.ast.2020.105998.
  33. Rezaiee-Pajand, M. and Masoodi, A.R. (2019), "Analyzing FG shells with large deformations and finite rotations", World J. Eng., 16(5), 636-647. https://doi.org/10.1108/WJE-10-2018-0357.
  34. Rezaiee-Pajand, M. and Masoodi, A.R. (2018a), "Exact natural frequencies and buckling load of functionally graded material tapered beam-columns considering semi-rigid connections", J. Vib. Control, 24(9), 1787-1808. https://doi.org/10.1177/1077546316668932.
  35. Rezaiee-Pajand, M. and Masoodi, A.R. (2018b), "Hygro-thermoelastic nonlinear analysis of functionally graded porous composite thin and moderately thick shallow panels", Mech. Adv. Mater. Struct., 24(9), 1787-1808. https://doi.org/10.1080/15376494.2020.1780524.
  36. She, G.L. (2021), "Guided wave propagation of porous functionally graded plates: The effect of thermal loadings", J. Thermal Stresses, 44(10), 1289-1305. https://doi.org/10.1080/01495739.2021.1974323.
  37. She, G.L., Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407.
  38. Sobhani, E. and Masoodi, A.R. (2021), "Natural frequency responses of hybrid polymer/carbon fiber/FG-GNP nanocomposites paraboloidal and hyperboloidal shells based on multiscale approaches", Aeros. Sci. Technol., 119, 107111. https://doi.org/10.1016/j.ast.2021.107111.
  39. Sobhani, E., Masoodi, A.R. and Ahmadi-Pari, A.R. (2021), "Vibration of FG-CNT and FG-GNP sandwich composite coupled Conical-Cylindrical-Conical shell", Compos. Struct., 273, 114281. https://10.1016/j.compstruct.2021.114281.
  40. Tan, X., Ding, H. and Chen, L.Q. (2019), "Nonlinear frequencies and forced responses of pipes conveying fluid via a coupled Timoshenko model", J. Sound Vib., 455, 241-255. http://dx.doi.org/10.1016/j.jsv.2019.05.019.
  41. Tan, X., Ding, H., Sun, J.Q. and Chen, L.Q. (2020), "Primary and super-harmonic resonances of Timoshenko pipes conveying high-speed fluid", Ocean Eng., 203, 107258. http://dx.doi.org/10.1016/j.oceaneng.2020.107258.
  42. Tang, Y. and Yang, T. (2018), "Post-buckling behavior and nonlinear vibration analysis of a fluid-conveying pipe composed of functionally graded material", Compos. Struct., 185, 393-400. http://dx.doi.org/10.1016/j.compstruct.2017.11.032.
  43. Xiao, H., Yan, K.M. and She, G. (2021), "Study on the characteristics of wave propagation in functionally graded porous square plates", Geomech. Eng., 26(6), 607-615. http://dx.doi.org/10.12989/gae.2021.26.6.607.
  44. Yang, J., Huang, X.H. and Shen, H.S. (2020a), "Nonlinear vibration of temperature-dependent FG-CNTRC laminated plates with negative Poisson's ratio", Thin Wall. Struct., 148, 106514. https://doi.org/10.1016/j.tws.2019.106514.
  45. Yang, J., Huang, X.H. and Shen, H.S. (2020b), "Nonlinear vibration of Temperature-Dependent FG-CNTRC laminated beams with negative Poisson's ratio", Int. J. Struct. Stab. Dyn., 20(04), 2050043. https://doi.org/10.1142/S0219455420500431.
  46. Zarga, D., Tounsi, A., Bousahla, A. A., Bourada, F. and Mahmoud, S.R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi 3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.389.
  47. Zhang, Y.Y., Wang, Y.X., Zhang, X., Shen, H.M. and She, G.L. (2021), "On snap-buckling of FG-CNTR curved nanobeams considering surface effects", Steel Compos. Struct. 38(3), 293-304. http://dx.doi.org/10.12989/scs.2021.38.3.293.
  48. Zhao, Q. and Sun, Z. (2018), "Flow-induced vibration of curved pipe conveying fluid by a new transfer matrix method", Eng. Appl. Comp. Fluid, 12(1), 780-790. http://dx.doi.org/10.1080/19942060.2018.1527725.
  49. Zhong, J., Fu, Y., Wan, D. and Li, Y. (2016), "Nonlinear bending and vibration of functionally graded tubes resting on elastic foundations in thermal environment based on a refined beam model", Appl. Math. Model., 40(17-18), 7601-7614. https://doi.org/10.1016/j.apm.2016.03.03.
  50. Zhou, K., Ni, Q., Dai, H.L. and Wang, L. (2020), "Nonlinear forced vibrations of supported pipe conveying fluid subjected to an axial base excitation", J. Sound Vib., 471, 115189. http://dx.doi.org/10.1016/j.jsv.2020.115189.
  51. Zhou, K., Xiong, F.R., Jiang, N.B., Dai, H.L., Yan, H., Wang, L. and Ni, Q. (2019), "Nonlinear vibration control of a cantilevered fluid-conveying pipe using the idea of nonlinear energy sink", Nonlinear Dyn., 95(2), 1435-1456. http://dx.doi.org/10.1007/s11071-018-4637-8.
  52. Zhu, B., Xu, Q., Li, M. and Li, Y. (2020), "Nonlinear free and forced vibrations of porous functionally graded pipes conveying fluid and resting on nonlinear elastic foundation", Compos. Struct., 252, 112672. http://dx.doi.org/10.1016/j.compstruct.2020.112672