References
- Alnujaie, A., Akbas, S.D., Eltaher, M.A. and Assie, A.E. (2021a), "Forced vibration of a functionally graded porous beam resting on viscoelastic foundation", Geomech. Eng., 24(1), 91-103. http://dx.doi.org/10.12989/gae.2021.24.1.091.
- Alnujaie, A., Akbas, S.D., Eltaher, M.A. and Assie, A.E. (2021b), "Damped forced vibration analysis of layered functionally graded thick beams with porosity", Smart Struct. Syst., 27(4), 679-689. http://dx.doi.org/10.12989/sss.2021.27.4.679.
- Akbas, S.D., Bashiri, A.H., Assie, A.E. and Eltaher, M.A. (2021), "Dynamic analysis of thick beams with functionally graded porous layers and viscoelastic support", J. Vib. Control, 27(13-14), 1644-1655. http://dx.doi.org/10.1177/1077546320947302.
- Cao, J., Liu, Y. and Liu, W. (2018), "The effect of two cases of temperature distributions on vibration of fluid-conveying functionally graded thin-walled pipes", J. Strain Anal. Eng. Des., 53(5), 030932471877059, 324-331. http://dx.doi.org/10.1177/0309324718770594.
- Civalek, O., Uzun, B., Yayli, M.O. and Akgoz, B. (2020a), "Size dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method", Eur. Phys. J. Plus, 135, 381. https://doi.org/10.1140/epjp/s13360--020020--0038500385-w.
- Civalek, O., Dastjerdi, S., Akbas, S.D. and Akgoz, B., (2020b), "Vibration analysis of carbon nanotube-reinforced composite nicrobeams", Mathem. Meth. Appl. Sci., https://doi.org/10.1002/mma.7069.
- Dai, J., Liu, Y., Liu, H., Miao, C. and Tong, G. (2019), "A parametric study on thermo-mechanical vibration of axially functionally graded material pipe conveying fluid", Int. J. Mech. Mater. Des., 15(3), 715-726. http://dx.doi.org/10.1007/s10999-018-09439-5.
- Dehrouyeh-Semnani, A.M., Dehdashti, E., Yazdi, M. and Nikkhah-Bahrami, M. (2019), "Nonlinear thermo-resonant behavior of fluid-conveying FG pipes", Int. J. Eng. Sci., 144, 103141. http://dx.doi.org/10.1016/j.ijengsci.2019.103141.
- Demir, C. and Civalek, O. (2017), "On the analysis of microbeams", Int. J. Eng. Sci., 121, 14-33. https://doi.org/10.1016/j.ijengsci.2017.08.016.
- Ding, H.X. and She, G.L. (2021), "A higher-order beam model for the snap-buckling analysis of FG pipes conveying fluid", Struct. Eng. Mech., 80(1), 63-72. http://dx.doi.org/10.12989/sem.2021.80.1.063.
- Esen, I, Daikh, A.A. and Eltaher, M.A. (2021), "Dynamic response of nonlocal strain gradient FG nanobeam reinforced by carbon nanotubes under moving point load", Europ. Phys. J. Plus, 136 (4), 458. http://dx.doi.org/10.1140/epjp/s13360-021-01419-7.
- Ebrahimi, F. and Barati, M. (2017), "A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams", Compos. Struct., 159(1), 174-182. http://doi.org/10.1016/j.compstruct.2016.09.058.
- Faleh, N.M., Ahmed, R.A. and Fenjan, R.M. (2018), "On vibrations of porous FG nanoshells", Int. J. Eng. Sci., 133, 1-14. https://doi.org/10.1016/j.ijengsci.2018.08.007.
- Golmakani, M.E., Malikan, M. and Pour, S. G. (2021), "Bending analysis of functionally graded nanoplates based on a higherorder shear deformation theory using dynamic relaxation method", Continuum Mech. Thermodynamics, https://doi.org/10.1007/s00161-021-00995-4 .
- Hachemi, H., Bousahla, A.A., Kaci, A., Bourada, F., Tounsi, A., Benrahou, K., Tounsi, A., Al-Zahrani, M.M. and Mahmoud, S. R. (2021), "Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position", Steel Compos. Struct., 39(1), 51-64. https://doi.org/10.12989/scs.2021.39.1.051.
- Heshmati, M. (2020), "Influence of an eccentricity imperfection on the stability and vibration behavior of fluid-conveying functionally graded pipes", Ocean Eng., 203, 107192. http://dx.doi.org/10.1016/j.oceaneng.2020.107192.
- Hu, Y.J. and Zhu, W. (2018), "Vibration analysis of a fluidconveying curved pipe with an arbitrary undeformed configuration", Appl. Math. Model., 64, 624-642. http://dx.doi.org/10.1016/j.apm.2018.06.046.
- Jalaei, M.H. and Civalek, O. (2019), "On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam", Int. J. Eng. Sci., 143, 14-32. https://doi.org/10.1016/j.ijengsci.2019.06.013.
- Li, J., Deng, H. and Jiang, W. (2019), "Dynamic response and vibration suppression of a cantilevered pipe conveying fluid under periodic excitation", J. Vib. Control, 25(11), 1695-1705. http://dx.doi.org/10.1177/1077546319837789.
- Li, Y.D. and Yang, Y.R. (2017), "Vibration analysis of conveying fluid pipe via He's variational iteration method", Appl. Math. Model., 43, 409-420. http://dx.doi.org/10.1016/j.apm.2016.11.029.
- Lian, F., Yang, X.D., Zhang, W. and Qian, Y.J. (2018), "Nonlinear free vibration of spinning viscoelastic pipes conveying fluid", Int. J. Appl. Mech., 10(7), 1850076. http://dx.doi.org/10.1142/S175882511850076X.
- Liang, F., Yang, X.D., Qian, Y.J. and Zhang, W. (2018), "Transverse free vibration and stability analysis of spinning pipes conveying fluid", Int. J. Mech. Sci., 137, 195-204. http://dx.doi.org/10.1016/j.ijmecsci.2018.01.015.
- Lu, L., She, G.L. and Guo, X. (2021), "Size-dependent postbuckling analysis of graphene reinforced composite microtubes with geometrical imperfection", Int. J. Mech. Sci., 199, 106428. https://doi.org/10.1016/j.ijmecsci.2021.106428.
- Kirshenbaum, A.D., Cahill, J.A. and Grosse, A.V. (1961), "The density of liquid lead from the melting", J. Inorganic Nuclear Chemistry, 22(1-2), 33-38. https://doi.org/10.1016/0022-1902(61)80226-1.
- Malikan, M. and Eremeyev, V.A. (2021), "Effect of surface on the flexomagnetic response of ferroic composite nanostructures; nonlinear bending analysis", Compos. Struct., 271, 114179. https://doi.org/10.1016/j.compstruct.2021.114179.
- Malikan, M. and Eremeyev, V.A. (2020), "A new hyperbolic-polynomial higher-order elasticity theory for mechanics of thick FGM beams with imperfection in the material composition", Compos. Struct., 249, 112486. https://doi.org/10.1016/j.compstruct.2020.112486.
- Malikan, M., Wiczenbach, T. and Eremeyev, V.A. (2021), "Thermal buckling of functionally graded piezomagnetic micro-and nanobeams presenting the flexomagnetic effect", Continuum. Mech. Therm., https://doi.org/10.1007/s00161-021-01038-8.
- Melaibari, A., Khoshaim, A.B., Mohamed, S.A. and Eltaher, M.A. (2021), "Static stability and of symmetric and sigmoid functionally graded beam under variable axial load", Steel Compos. Struct., 35(5), 671-685. https://doi.org/10.12989/scs.2020.35.5.671.
- Meksi, A., Benyoucef, S., Sekkal, M., Bouiadjra, R.B., Selim, M. M., Tounsi, A. and Hussain, M. (2021), "Influence of micromechanical models on the bending response of bidirectional FG beams under linear, uniform, exponential and sinusoidal distributed loading", Steel Compos. Struct., 39(2), 215-228. https://doi.org/10.12989/scs.2021.39.2.215.
- Reddy, J.N. and Chin, C.D. (1998), "Thermomechanical analysis of functionally graded cylinders and plates", J. Thermal Stresses, 21(6), 593-626. https://doi.org/10.1080/01495739808956165.
- Rezaiee-Pajand, M., Sobhani, E. and Masoodi, A.R. (2021a), "Semi-analytical vibrational analysis of functionally graded carbon nanotubes coupled conical-conical shells", Thin-walled Struct., 159, 107272. https://doi.org/10.1016/j.tws.2020.107272.
- Rezaiee-Pajand, M., Sobhani, E. and Masoodi, A.R. (2021b), "Free vibration analysis of functionally graded hybrid matrix/fiber nanocomposite conical shells using multiscale method", Aeros. Sci. Technol., 105, 105998. https://doi.org/10.1016/j.ast.2020.105998.
- Rezaiee-Pajand, M. and Masoodi, A.R. (2019), "Analyzing FG shells with large deformations and finite rotations", World J. Eng., 16(5), 636-647. https://doi.org/10.1108/WJE-10-2018-0357.
- Rezaiee-Pajand, M. and Masoodi, A.R. (2018a), "Exact natural frequencies and buckling load of functionally graded material tapered beam-columns considering semi-rigid connections", J. Vib. Control, 24(9), 1787-1808. https://doi.org/10.1177/1077546316668932.
- Rezaiee-Pajand, M. and Masoodi, A.R. (2018b), "Hygro-thermoelastic nonlinear analysis of functionally graded porous composite thin and moderately thick shallow panels", Mech. Adv. Mater. Struct., 24(9), 1787-1808. https://doi.org/10.1080/15376494.2020.1780524.
- She, G.L. (2021), "Guided wave propagation of porous functionally graded plates: The effect of thermal loadings", J. Thermal Stresses, 44(10), 1289-1305. https://doi.org/10.1080/01495739.2021.1974323.
- She, G.L., Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407.
- Sobhani, E. and Masoodi, A.R. (2021), "Natural frequency responses of hybrid polymer/carbon fiber/FG-GNP nanocomposites paraboloidal and hyperboloidal shells based on multiscale approaches", Aeros. Sci. Technol., 119, 107111. https://doi.org/10.1016/j.ast.2021.107111.
- Sobhani, E., Masoodi, A.R. and Ahmadi-Pari, A.R. (2021), "Vibration of FG-CNT and FG-GNP sandwich composite coupled Conical-Cylindrical-Conical shell", Compos. Struct., 273, 114281. https://10.1016/j.compstruct.2021.114281.
- Tan, X., Ding, H. and Chen, L.Q. (2019), "Nonlinear frequencies and forced responses of pipes conveying fluid via a coupled Timoshenko model", J. Sound Vib., 455, 241-255. http://dx.doi.org/10.1016/j.jsv.2019.05.019.
- Tan, X., Ding, H., Sun, J.Q. and Chen, L.Q. (2020), "Primary and super-harmonic resonances of Timoshenko pipes conveying high-speed fluid", Ocean Eng., 203, 107258. http://dx.doi.org/10.1016/j.oceaneng.2020.107258.
- Tang, Y. and Yang, T. (2018), "Post-buckling behavior and nonlinear vibration analysis of a fluid-conveying pipe composed of functionally graded material", Compos. Struct., 185, 393-400. http://dx.doi.org/10.1016/j.compstruct.2017.11.032.
- Xiao, H., Yan, K.M. and She, G. (2021), "Study on the characteristics of wave propagation in functionally graded porous square plates", Geomech. Eng., 26(6), 607-615. http://dx.doi.org/10.12989/gae.2021.26.6.607.
- Yang, J., Huang, X.H. and Shen, H.S. (2020a), "Nonlinear vibration of temperature-dependent FG-CNTRC laminated plates with negative Poisson's ratio", Thin Wall. Struct., 148, 106514. https://doi.org/10.1016/j.tws.2019.106514.
- Yang, J., Huang, X.H. and Shen, H.S. (2020b), "Nonlinear vibration of Temperature-Dependent FG-CNTRC laminated beams with negative Poisson's ratio", Int. J. Struct. Stab. Dyn., 20(04), 2050043. https://doi.org/10.1142/S0219455420500431.
- Zarga, D., Tounsi, A., Bousahla, A. A., Bourada, F. and Mahmoud, S.R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi 3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.389.
- Zhang, Y.Y., Wang, Y.X., Zhang, X., Shen, H.M. and She, G.L. (2021), "On snap-buckling of FG-CNTR curved nanobeams considering surface effects", Steel Compos. Struct. 38(3), 293-304. http://dx.doi.org/10.12989/scs.2021.38.3.293.
- Zhao, Q. and Sun, Z. (2018), "Flow-induced vibration of curved pipe conveying fluid by a new transfer matrix method", Eng. Appl. Comp. Fluid, 12(1), 780-790. http://dx.doi.org/10.1080/19942060.2018.1527725.
- Zhong, J., Fu, Y., Wan, D. and Li, Y. (2016), "Nonlinear bending and vibration of functionally graded tubes resting on elastic foundations in thermal environment based on a refined beam model", Appl. Math. Model., 40(17-18), 7601-7614. https://doi.org/10.1016/j.apm.2016.03.03.
- Zhou, K., Ni, Q., Dai, H.L. and Wang, L. (2020), "Nonlinear forced vibrations of supported pipe conveying fluid subjected to an axial base excitation", J. Sound Vib., 471, 115189. http://dx.doi.org/10.1016/j.jsv.2020.115189.
- Zhou, K., Xiong, F.R., Jiang, N.B., Dai, H.L., Yan, H., Wang, L. and Ni, Q. (2019), "Nonlinear vibration control of a cantilevered fluid-conveying pipe using the idea of nonlinear energy sink", Nonlinear Dyn., 95(2), 1435-1456. http://dx.doi.org/10.1007/s11071-018-4637-8.
- Zhu, B., Xu, Q., Li, M. and Li, Y. (2020), "Nonlinear free and forced vibrations of porous functionally graded pipes conveying fluid and resting on nonlinear elastic foundation", Compos. Struct., 252, 112672. http://dx.doi.org/10.1016/j.compstruct.2020.112672