과제정보
이 논문은 2021년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임(No.2019-0-00197, 스마트 퍼실러티 환경보호를 위한 신뢰기반 사이버 보안 플랫폼).
참고문헌
- A. S. Gillis, "What is IoT (Internet of Things) and how does it work," IoT Agenda, TechTarget, 11, 2020.
- Statista, "Number of Internet of Things (IoT) connected devices worldwide from 2019 to 2030," 2020.
- M. B. Barcena and C. Wueest, "Insecurity in the internet of things," Security Response, Symantec, 2015.
- N. Woolf, "DDoS attack that disrupted internet was largest of its kind in history, experts say," The Guardian, 26, 2016.
- J. Gamblin, Mirai Source Code [Internet], https://github.com/jgamblin/Mirai-Source-Code.
- AhnLab, "Mirai variant malware analysis report," ASEC Report, Vol.100, 2020.
- Y. Ye, T. Li, D. Adjeroh, and S. S. Iyengar, "A survey on malware detection using data mining techniques," ACM Computing Surveys (CSUR), Vol.50, No.3, pp.1-40, 2017.
- E. Cozzi, M. Graziano, Y. Fratantonio, and D. Balzarotti, "Understanding linux malware," In 2018 IEEE Symposium on Security and Privacy (SP), IEEE, 2018.
- R. Sihwail, K. Omar, and K. A. Z. Ariffin, "A survey on malware analysis techniques: Static, dynamic, hybrid and memory analysis," International Journal on Advanced Science, Engineering and Information Technology, Vol.8, No.4-2, pp.1662-1671, 2018. https://doi.org/10.18517/ijaseit.8.4-2.6827
- T. L. Wan et al., "Efficient detection and classification of internet-of-things malware based on byte sequences from executable files," IEEE Open Journal of the Computer Society, Vol.1, pp.262-275, 2020. https://doi.org/10.1109/OJCS.2020.3033974
- H. Darabian, A. Dehghantanha, S. Hashemi, S. Homayoun, and K. K. R. Choo, "An opcode-based technique for polymorphic Internet of Things malware detection," Concurrency and Computation Practice and Experience, Vol.32, No.6, pp.e5173, 2019.
- I. Miliaraki, K. Berberich, R. Genmulla, and S. Zoupanos, "Mind the gap: Large-scale frequent sequence mining," In Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, ACM, 2013.
- J. Jeon, J. H. Park, and Y. Jeong, "Dynamic analysis for IoT malware detection with convolution neural network model," IEEE Access, Vol.8, pp.96899-96911, 2020. https://doi.org/10.1109/access.2020.2995887
- M. D. Zeiler and R. Fergus, "Visualizing and understanding convolution networks," European Conference on Computer Vision, Springer, Cham, 2014.
- R. Lyda and J. Hamrock, "Using entropy analysis to find encrpyted and packed malware," IEEE Security & Privacy, Vol.5, No.2, pp.40-45, 2007.
- I. Sorokin, "Comparing files using structural entropy," Journal in Computer Virology, Vol.7, No.4, pp.259-265, 2011. https://doi.org/10.1007/s11416-011-0153-9
- S. Goki, "Deep learning from scratch 2," Oreilly, 2019.
- Malwares.com [Internet], https://www.malwares.com/.
- Kaspersky [Internet], https://www.kaspersky.co.kr/.