• 제목/요약/키워드: Malware Family Classification

검색결과 14건 처리시간 0.028초

A Cross-Platform Malware Variant Classification based on Image Representation

  • Naeem, Hamad;Guo, Bing;Ullah, Farhan;Naeem, Muhammad Rashid
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권7호
    • /
    • pp.3756-3777
    • /
    • 2019
  • Recent internet development is helping malware researchers to generate malicious code variants through automated tools. Due to this reason, the number of malicious variants is increasing day by day. Consequently, the performance improvement in malware analysis is the critical requirement to stop the rapid expansion of malware. The existing research proved that the similarities among malware variants could be used for detection and family classification. In this paper, a Cross-Platform Malware Variant Classification System (CP-MVCS) proposed that converted malware binary into a grayscale image. Further, malicious features extracted from the grayscale image through Combined SIFT-GIST Malware (CSGM) description. Later, these features used to identify the relevant family of malware variant. CP-MVCS reduced computational time and improved classification accuracy by using CSGM feature description along machine learning classification. The experiment performed on four publically available datasets of Windows OS and Android OS. The experimental results showed that the computation time and malware classification accuracy of CP-MVCS was higher than traditional methods. The evaluation also showed that CP-MVCS was not only differentiated families of malware variants but also identified both malware and benign samples in mix fashion efficiently.

악성코드 패밀리 분류를 위한 API 특징 기반 앙상블 모델 학습 (API Feature Based Ensemble Model for Malware Family Classification)

  • 이현종;어성율;황두성
    • 정보보호학회논문지
    • /
    • 제29권3호
    • /
    • pp.531-539
    • /
    • 2019
  • 본 논문에서는 악성코드 패밀리 분류를 위한 훈련 데이터의 특징을 제안하고, 앙상블 모델을 이용한 다중 분류 성능을 분석한다. 악성코드 실행 파일로부터 API와 DLL 데이터를 추출하여 훈련 데이터를 구성하며, 의사 결정 트리기반 Random Forest와 XGBoost 알고리즘으로 모델을 학습한다. 악성코드에서 빈번히 사용되는 API와 DLL 정보를 분석하며, 고차원의 훈련 데이터 특징을 저차원의 특징 표현으로 변환시켜, 악성코드 탐지와 패밀리 분류를 위한 API, API-DLL, DLL-CM 특징을 제안한다. 제안된 특징 선택 방법은 데이터 차원 축소와 빠른 학습의 장점을 제공한다. 성능 비교에서 악성코드 탐지율은 Random Forest가 93.0%, 악성코드 패밀리 분류 정확도는 XGBoost가 92.0%, 그리고 정상코드를 포함하는 테스트 오탐률은 Random Forest와 XGBoost가 3.5%이다.

엔트로피 시계열 데이터 추출과 순환 신경망을 이용한 IoT 악성코드 탐지와 패밀리 분류 (IoT Malware Detection and Family Classification Using Entropy Time Series Data Extraction and Recurrent Neural Networks)

  • 김영호;이현종;황두성
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권5호
    • /
    • pp.197-202
    • /
    • 2022
  • IoT (Internet of Things) 장치는 취약한 아이디/비밀번호 사용, 인증되지 않은 펌웨어 업데이트 등 많은 보안 취약점을 보여 악성코드의 공격 대상이 되고 있다. 그러나 CPU 구조의 다양성으로 인해 악성코드 분석 환경 설정과 특징 설계에 어려움이 있다. 본 논문에서는 CPU 구조와 독립된 악성코드의 특징 표현을 위해 실행 파일의 바이트 순서를 이용한 시계열 특징을 설계하고 순환 신경망을 통해 분석한다. 제안하는 특징은 바이트 순서의 부분 엔트로피 계산과 선형 보간을 통한 고정 길이의 시계열 패턴이다. 추출된 특징의 시계열 변화는 RNN과 LSTM으로 학습시켜 분석한다. 실험에서 IoT 악성코드 탐지는 높은 성능을 보였지만, 패밀리 분류는 비교적 성능이 낮았다. 악성코드 패밀리별 엔트로피 패턴을 시각화하여 비교했을 때 Tsunami와 Gafgyt 패밀리가 유사한 패턴을 나타내 분류 성능이 낮아진 것으로 분석되었다. 제안된 악성코드 특징의 데이터 간 시계열 변화 학습에 RNN보다 LSTM이 더 적합하다.

다중 서열 정렬 기법을 이용한 악성코드 패밀리 추천 (Malware Family Recommendation using Multiple Sequence Alignment)

  • 조인겸;임을규
    • 정보과학회 논문지
    • /
    • 제43권3호
    • /
    • pp.289-295
    • /
    • 2016
  • 악성코드 개발자들은 악성코드 탐지를 회피하기 위하여 변종 악성코드를 유포한다. 정적 분석 기반의 안티 바이러스로는 변종 악성코드를 탐지하기 어려우며, 따라서 API 호출 정보 기반의 동적 분석이 필요하다. 본 논문에서는 악성코드 분석가의 변종 악성코드 패밀리 분류에 도움을 줄 수 있는 악성코드 패밀리 추천 기법을 제안하였다. 악성코드 패밀리의 API 호출 정보를 동적 분석을 통하여 추출하였다. 추출한 API 호출 정보에 다중 서열 정렬 기법을 적용하였다. 정렬 결과로부터 각 악성코드 패밀리의 시그니쳐를 추출하였다. 시그니쳐와의 유사도를 기준으로, 제안하는 기법이 새로운 악성코드의 패밀리 후보를 3개까지 추천하도록 하였다. 실험을 통하여 제안한 악성코드 패밀리 추천 기법의 정확도를 측정하였다.

악성코드 이미지화와 전이학습을 이용한 악성코드 분류 기법 (Malware Classification Method using Malware Visualization and Transfer Learning)

  • 이종관;이민우
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.555-556
    • /
    • 2021
  • 본 논문은 악성코드의 이미지화와 전이학습을 이용한 악성코드 분류 방안을 제안한다. 공개된 악성코드는 쉽게 재사용 또는 변형이 가능하다. 그런데 전통적인 악성코드 탐지 기법은 변형된 악성코드를 탐지하는데 취약하다. 동일한 부류에 속하는 악성코드들은 서로 유사한 이미지로 변환된다. 따라서 제안하는 기법은 악성코드를 이미지화하고 이미지 분류 분야에서 검증된 딥러닝 모델을 사용하여 악성코드의 부류를 분류한다. Malimg 데이터셋에 대해 VGG-16 모델을 이용하여 실험한 결과 98% 이상의 분류 정확도를 나타냈다.

  • PDF

API 호출 빈도를 이용한 악성코드 패밀리 탐지 및 분류 방법 (Malware Family Detection and Classification Method Using API Call Frequency)

  • 조우진;김형식
    • 정보보호학회논문지
    • /
    • 제31권4호
    • /
    • pp.605-616
    • /
    • 2021
  • 악성코드는 임의의 프로그램을 대상으로 정확하게 식별할 수 있어야 하지만, 분류 기법을 이용하는 기존 연구들은 제한된 샘플에만 적용할 수 있다는 한계가 있다. 본 논문은 임의의 프로그램으로부터 악성코드 패밀리를 탐지하고 분류하기 위해 API 호출 빈도를 이용하는 방법을 제안한다. 제안 방법은 특정 API에 대한 호출 빈도가 임계값을 넘는지 검사하는 규칙을 정의하고, 해당하는 규칙에 의한 비율 정보를 활용하여 특정 패밀리를 식별하는 것이다. 본 논문에서는 결정트리 알고리즘을 응용하여 학습셋으로부터 특정 패밀리를 가장 잘 식별할 수 있는 값으로 임계값을 결정하였다. 4,443개의 샘플을 이용해 학습셋과 시험셋을 나눠 성능을 측정한 결과 패밀리 탐지의 경우 85.1%의 정밀도와 91.3%의 재현율을 보이고, 분류의 경우 97.7%의 정밀도와 98.1%의 재현율을 보여 악성코드 패밀리를 효과적으로 식별할 수 있음을 확인하였다.

멀티모달 기반 악성코드 유사도 계산 기법 (Multi-Modal Based Malware Similarity Estimation Method)

  • 유정도;김태규;김인성;김휘강
    • 정보보호학회논문지
    • /
    • 제29권2호
    • /
    • pp.347-363
    • /
    • 2019
  • 사람의 DNA가 변하지 않는 것과 같이 사이버상의 악성코드도 변하지 않는 고유의 행위 특징을 갖고 있다. APT(Advanced Persistent Threat) 공격에 대한 방어수단을 사전에 확보하기 위해서는 악성코드의 악성 행위 특징을 추출해야 한다. 이를 위해서는 먼저 악성코드 간의 유사도를 계산하여 유사한 악성코드끼리 분류할 수 있어야 한다. 본 논문에서는 Windows OS 상에서 동작하는 악성코드 간의 유사도 계산 방법으로 'TF-IDF 코사인 유사도', 'Nilsimsa 유사도', '악성코드 기능 유사도', 'Jaccard 유사도'를 사용해 악성코드의 유형을 예측해보고, 그 결과를 보인다. 실험결과, 유사도 계산 방식마다 악성코드 유형에 따라 예측률의 차이가 매우 컸음을 발견할 수 있었다. 모든 결과에 월등한 정확도를 보인 유사도는 존재하지 않았으나, 본 실험결과를 이용하여 특정 패밀리의 악성코드를 분류할 때 어떤 유사도 계산 방식을 활용하는 것이 상대적으로 유리할지를 결정할 때 도움이 될 것으로 판단된다.

유사성 해시 기반 악성코드 유형 분류 기법 (Method of Similarity Hash-Based Malware Family Classification)

  • 김윤정;김문선;이만희
    • 정보보호학회논문지
    • /
    • 제32권5호
    • /
    • pp.945-954
    • /
    • 2022
  • 매년 수십억 건의 악성코드가 탐지되고 있지만, 이 중 신종 악성코드는 0.01%에 불과하다. 이러한 상황에 효과적인 악성코드 유형 분류 도구가 필요하지만, 선행 연구들은 복잡하고 방대한 양의 데이터 전처리 과정이 필요하여 많은 양의 악성코드를 신속하게 분석하기에는 한계가 있다. 이 문제를 해결하기 위해 본 논문은 유사성 해시를 기반으로 복잡한 데이터 전처리 과정 없이 악성코드의 유형을 분류하는 기법을 제안한다. 이 기법은 악성코드의 유사성 해시 정보를 바탕으로 XGBoost 모델을 학습하며, 평가를 위해 악성코드 분류 분야에 널리 활용되는 BIG-15 데이터셋을 사용했다. 평가 결과, 98.9%의 정확도로 악성코드를 분류했고, 3,432개의 일반 파일을 100% 정확도로 구분했다. 이 결과는 복잡한 전처리 과정 및 딥러닝 모델을 사용하는 대부분의 최신 연구들보다 우수하다. 따라서 제안한 접근법을 사용하면 보다 효율적인 악성코드 분류가 가능할 것으로 예상된다.

행위기반의 프로파일링 기법을 활용한 모바일 악성코드 분류 기법 (Andro-profiler: Anti-malware system based on behavior profiling of mobile malware)

  • 윤재성;장재욱;김휘강
    • 정보보호학회논문지
    • /
    • 제24권1호
    • /
    • pp.145-154
    • /
    • 2014
  • 본 논문에서는 범죄수사에서 사용되는 프로파일링 기법을 이용한 모바일 악성코드 행위 프로파일링을 통하여 효율적인 모바일 악성코드 분류 방법론 Andro-profiler를 제안한다. Andro-profiler는 클라이언트/서버 형태로, 클라이언트 앱이 모바일기기에 설치되어 사용자가 사용하고 있는 앱에 대한 정보를 서버에 전송하고, 서버에서는 해당 앱을 동적 분석 도구인 Droidbox가 설치된 에뮬레이터에서 실행시키면서 발생되는 시스템 콜과 에뮬레이터 로그를 이용하여 해당 앱의 행동을 프로파일링하며, 해당 앱의 프로파일링 목록을 저장된 악성코드 프로파일링 DB와 비교하여 악성유무를 판단하고, 악성코드로 판단될 경우 분류를 실시하여 클라이언트에게 결과를 통보한다. 실험결과, Andro-profiler는 1MB의 악성코드를 분류하는데 평균 55초가 소요되었고, 99%의 정확도로 악성코드를 분류하는 것을 확인하였으며, 기존 방법론보다 더 정확하게 악성코드를 분류할 수 있다.

De-cloaking Malicious Activities in Smartphones Using HTTP Flow Mining

  • Su, Xin;Liu, Xuchong;Lin, Jiuchuang;He, Shiming;Fu, Zhangjie;Li, Wenjia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권6호
    • /
    • pp.3230-3253
    • /
    • 2017
  • Android malware steals users' private information, and embedded unsafe advertisement (ad) libraries, which execute unsafe code causing damage to users. The majority of such traffic is HTTP and is mixed with other normal traffic, which makes the detection of malware and unsafe ad libraries a challenging problem. To address this problem, this work describes a novel HTTP traffic flow mining approach to detect and categorize Android malware and unsafe ad library. This work designed AndroCollector, which can automatically execute the Android application (app) and collect the network traffic traces. From these traces, this work extracts HTTP traffic features along three important dimensions: quantitative, timing, and semantic and use these features for characterizing malware and unsafe ad libraries. Based on these HTTP traffic features, this work describes a supervised classification scheme for detecting malware and unsafe ad libraries. In addition, to help network operators, this work describes a fine-grained categorization method by generating fingerprints from HTTP request methods for each malware family and unsafe ad libraries. This work evaluated the scheme using HTTP traffic traces collected from 10778 Android apps. The experimental results show that the scheme can detect malware with 97% accuracy and unsafe ad libraries with 95% accuracy when tested on the popular third-party Android markets.