DOI QR코드

DOI QR Code

The combined reinforcement to recycled aggregate concrete by circular steel tube and basalt fiber

  • Zhang, Xianggang (School of Intelligent Construction, Wuchang University of Technology) ;
  • Zhang, Songpeng (School of Civil Engineering, Henan Polytechnic University) ;
  • Chen, Xu (School of Civil Engineering, Henan Polytechnic University) ;
  • Gao, Xiang (School of Civil Engineering, Henan Polytechnic University) ;
  • Zhou, Chunheng (School of Civil and Environmental Engineering, Ningbo University)
  • Received : 2021.02.26
  • Accepted : 2022.05.02
  • Published : 2022.05.25

Abstract

In order to study the axial compression performance of basalt-fiber reinforced recycled concrete (BFRRC) filled circular steel tubular short columns, the axial compression performance tests of seven short column specimens were conducted to observe the mechanical whole-process and failure mode of the specimens, the load-displacement curves and the load-strain curves of the specimens were obtained, the influence of design parameters on the axial compression performance of BFRRC filled circular steel tubular short columns was analyzed, and a practical mathematical model of stiffness degradation and a feasible stress-strain curve equation for the whole process were suggested. The results show that under the axial compression, the steel tube buckled and the core BFRRC was crushed. The load-axial deformation curves of all specimens show a longer deformation flow amplitude. Compared with the recycled coarse aggregate (RCA) replacement ratio and the basalt fiber dosage, the BFRRC strength has a great influence on the peak bearing capacity of the specimen. The RCA replacement ratio and the BFRRC strength are detrimental to ductility, whereas the basalt fiber dosage is beneficial to ductility.

Keywords

Acknowledgement

This work was financially supported by National Natural Science Foundation of China (U1904188), Key R&D and Promotion Projects in Henan Province (212102310288), and the Fundamental Research Funds for the Universities of Henan Province (NSFRF200320).

References

  1. Akhtar, A. and Sarmah A.K. (2018), "Construction and demolition waste generation and properties of recycled aggregate concrete: A global perspective", J. Clean Prod., 186, 262-281. https://doi.org/10.1016/j.jclepro.2018.03.085.
  2. Alnahhal, W. and Aljidda, O. (2018), "Flexural behavior of basalt fiber reinforced concrete beams with recycled concrete coarse aggregates", Constr. Build. Mater., 16(9), 165-178. http://doi.org/10.1016/j.conbuildmat.2018.02.135.
  3. Bai, G.L., Zhu, C., Liu, C. and Liu, B. (2020), "An evaluation of the recycled aggregate characteristics and the recycled aggregate concrete mechanical properties", Constr. Build. Mater., 240, 117978. http://doi.org/10.1016/j.conbuildmat.2019.117978.
  4. Cai, M., Ke, X.J. and Su, Y.S. (2020), "Axial compressive performance of RAC-encased RACFST composite columns", Eng. Struct., 210, 110393. http://doi.org/10.1016/j.engstruct.2020.110393.
  5. Chen, Y.L., Chen, Z.P., Xu, J.J., Lui, E.M. and Wu, B. (2019), "Performance evaluation of recycled aggregate concrete under multiaxial compression", Constr. Build. Mater., 229, 116935. http://doi.org/10.1016/j.conbuildmat.2019.116935.
  6. Choi, S. (2018), "Compressive performance of 50MPa concrete filled square and circular steel tubes (CFT) columns using recycled aggregate", J. Korean Soc. Adv. Compos. Struct., 9(2), 72-80. http://doi.org/10.11004/kosacs.2018.9.2.072.
  7. Colangelo, F., Petrillo, A., Cioffi, R., Borrelli, C. and Forcina, A. (2018), "Life cycle assessment of recycled concretes: A case study in southern Italy", Sci. Total Envir., 615, 1506-1517. https://doi.org/10.1016/j.scitotenv.2017.09.107.
  8. Dimitriou, G., Savva, P. and Petrou, M.F. (2018), "Enhancing mechanical and durability properties of recycled aggregate concrete", Constr. Build. Mater., 158, 228-235. https://doi.org/10.1016/j.conbuildmat.2017.09.137.
  9. Engelsen, C.J., van der Sloot, H.A. and Petkovic, G. (2017), "Long-term leaching from recycled concrete aggregates applied as sub-base material in road construction", Sci. Total Envir., 587, 94-101. http://doi.org/10.1016/j.scitotenv.2017.02.052.
  10. Fang, S.E., Hong, H.S. and Zhang, P.H. (2018), "Mechanical property tests and strength formulas of basalt fiber reinforced recycled aggregate concrete", Mater., 11(10), 1851. http://doi.org/10.3390/ma11101851.
  11. Han L.H. (2018), Concrete Filled Steel Tube Structure-Theory and Practice (third edition), Science Press, 193-226. (in Chinese)
  12. He, Z.J., Liu, G.W., Cao, W.L., Zhou, C.Y. and Zhang J.X. (2015), "Strength criterion of plain recycled aggregate concrete under biaxial compression", Comput. Concrete, 16(2), 209-222. http://doi.org/10.12989/cac.2015.16.2.209.
  13. Kabay, N. (2014), "Abrasion resistance and fracture energy of concretes with basalt fiber", Constr. Build. Mater., 50, 95-101. http://doi.org/10.1016/j.conbuildmat.2013.09.040.
  14. Katkhuda, H. and Shatarat, N. (2017) "Improving the mechanical properties of recycled concrete aggregate using chopped basalt fibers and acid treatment", Constr. Build. Mater., 140, 328-335. http://doi.org/10.1016/j.conbuildmat.2017.02.128.
  15. Kurda, R., de Brito, J. and Silvestre, J.D. (2017), "Combined influence of recycled concrete aggregates and high contents of fly ash on concrete properties", Constr. Build. Mater., 157, 554-572. https://doi.org/10.1016/j.conbuildmat.2017.09.128.
  16. Li, J.R., Liang, J.L., Zuo, J. and Guo, H. (2020), "Environmental impact assessment of mobile recycling of demolition waste in Shenzhen, China", J. Clean Prod., 263, 121371. https://doi.org/10.1016/j.jclepro.2020.121371.
  17. Li, J.T., Chen, Z.P., Xu, J.J., Jing, C.G. and Xue, J.Y. (2018), "Cyclic behavior of concrete-filled steel tubular column-reinforced concrete beam frames incorporating 100% recycled concrete aggregates", Adv. Struct. Eng., 21(12), 1802-1814. https://doi.org/10.1177/1369433218755521.
  18. Lu, D., Cao, H., Shen, Q.R., Gong, Y., Zhao, C. and Yan, X.H. (2020), "Dynamic characteristics and chloride resistance of basalt and polypropylene fibers reinforced recycled aggregate concrete", Adv. Polym. Tech., 2020, 6029047. http://doi.org/10.1155/2020/6029047.
  19. Marinkovic, S., Radonjanin, V., Malesev, M. and Ignjatovic, I. (2010), "Comparative environmental assessment of natural and recycled aggregate concrete", Waste Manag., 30(11), 2255-2264. https://doi:10.1016/j.wasman.2010.04.012.
  20. Niu, H.C. and Cao, W.L. (2015), "Full-scale testing of high-strength RACFST columns subjected to axial compression", Mag. Concrete Res., 67(5), 257-270. http://doi.org/10.1680/macr.14.00198.
  21. Nour, A.I. and Guneyisi, E.M. (2019), "Prediction model on compressive strength of recycled aggregate concrete filled steel tube columns", Compos. Part B Eng., 173, 106938. http://doi.org/10.1016/j.compositesb.2019.106938.
  22. Park, W.J., Noguchi, T. and Lee, H.S. (2013), "Genetic algorithm in mix proportion design of recycled aggregate concrete", Comput. Concrete, 11(3), 183-199. https://doi.org/10.12989/cac.2013.11.3.183.
  23. Shi, C.J., Li, Y.K., Zhang, J.K., Li, W.G., Chong, L.L. and Xie, Z.B. (2015), "Performance enhancement of recycled concrete aggregate-A review", J. Clean Prod., 112, 466-472. http://doi.org/10.1016/j.jclepro.2015.08.057.
  24. Skarzynski, L. (2020), "Mechanical and radiation shielding properties of concrete reinforced with boron-basalt fibers using digital image correlation and x-ray micro-computed tomography", Constr. Build. Mater., 255, 119252. http://doi.org/10.1016/j.conbuildmat.2020.119252.
  25. Tahmouresi, B., Koushkbaghi, M., Monazami, M., Abbasi, M.T. and Nemati, P. (2019). "Experimental and statistical analysis of hybrid-fiber-reinforced recycled aggregate concrete", Comput. Concrete, 24(3), 193-206. http://doi.org/10.12989/cac.2019.24.3.193.
  26. Tam, Vivian W.Y., Xiao, J.Z., Liu, S. and Chen, Z.X. (2019), "Behaviors of recycled aggregate concrete-filled steel tubular columns under eccentric loadings", Front. Struct. Civil Eng., 13(3), 628-639. http://doi.org/10.1007/s11709-018-0501-7.
  27. Tang, Y.C., Li, L.J., Feng, W.X., Liu, F. and Liao, B. (2017), "Seismic performance of recycled aggregate concrete-filled steel tube columns", J. Constr. Steel. Res., 66, 112-124. http://doi.org/10.1016/j.jcsr.2017.02.006.
  28. Tang, Y.C., Li, L.J., Feng, W.X., Liu, F. and Zhu, M. (2018) "Study of seismic behavior of recycled aggregate concrete-filled steel tubular columns", J. Constr. Steel. Res., 148, 1-15. https://doi.org/10.1016/j.jcsr.2018.04.031.
  29. Thomas, C., Setien, J., Polanco, J.A., Alaejos, P. and Sanchez de Juan, M. (2013), "Durability of recycled aggregate concrete", Constr. Build. Mater., 40, 1054-1065. http://doi.org/10.1016/j.conbuildmat.2012.11.106.
  30. Van Cao, V. (2019), "Experimental behaviour of recycled aggregate concrete-filled steel tubes under axial loading", Int. J. Civil Eng., 17(8A), 1341-1351. http://doi.org/10.1007/s40999-018-0383-z.
  31. Verian, K.P., Ashraf, W .and Cao, Y.Z. (2018), "Properties of recycled concrete aggregate and their influence in new concrete production", Res. Conserv. Recycl., 133, 30-49. https://doi:10.1016/j.resconrec.2018.02.005.
  32. Wang, Y.Y., Chen, J. and Geng, Y. (2015), "Testing and analysis of axially loaded normal-strength recycled aggregate concrete filled steel tubular stub columns", Eng. Struct., 86, 192-212. http://doi.org/10.1016/j.engstruct.2015.01.007.
  33. Xie, J., Zhang, H., Duan, L., Yang, Y. Z., Yan, J., Shan, D.D., Liu, X.L., Pang, J.J. Chen, Y.Y., Li, X. and Zhang, Y.N. (2020), "Effect of nano metakaolin on compressive strength of recycled concrete", Constr. Build. Mater., 256, 119393. https://doi.org/10.1016/j.conbuildmat.2020.119393.
  34. Xu, J.J., Zhao, X.Y., Chen, Z.P., Liu, J.C., Xue, J.Y. and Elchalakani, M. (2019), "Novel prediction models for composite elastic modulus of circular recycled aggregate concrete-filled steel tubes", Thin Wall. Struct., 144, 106317. http://doi.org/10.1016/j.tws.2019.106317.
  35. Xu, J.P., Shi, Y., Xie, Y.C. and Zhao, S.W. (2019), "A BIM-Based construction and demolition waste information management system for greenhouse gas quantification and reduction", J. Clean Prod., 229, 308-324. https://doi.org/10.1016/j.jclepro.2019.04.158.
  36. Xuan, D.X., Zhan, B.J. and Poon, C.S. (2016), "Assessment of mechanical properties of concrete incorporating carbonated recycled concrete aggregates", Cement Concrete Compos., 65, 67-74. http://doi.org/10.1016/j.cemconcomp.2015.10.018.
  37. Yang, Y.F. and Hou, C. (2015), "Behaviour and design calculations of recycled aggregate concrete-filled steel tube (RACFST) members", Mag. Concrete Res., 67, 611-620. http://doi.org/10.1680/macr.14.00204.
  38. Zhang, X.G., Deng, D.P., Lin, X.Y., Yang, J.H. and Fu, L. (2019b), "Mechanical performance of sand-lightweight concrete-filled steel tube stub column under axial compression", Struct. Eng. Mech., 69(6), 627-635. https://doi.org/10.12989/sem.2019.69.6.627.
  39. Zhang, X.G., Kuang, X.M., Wang, F. and Wang, S.R. (2019a), "Strength indices and conversion relations for basalt fiber-reinforced recycled aggregate concrete", Dyn., 94(1), 82-87. http://doi.org/10.6036/8986.
  40. Zhou, X.Z., Zheng, J.J., Chen, T., Zhang, J., Wang, C.Y. and Wu, J.F. (2019) "A numerical method for estimating the elastic modulus of recycled concrete", Comput. Concrete, 23(3), 161-170. http://doi.org/10.12989/cac.2019.23.3.161.
  41. Zhu, X.Y., Chen, X.D., Shen, N., Tian, H.X., Fan X.Q. and Lu J. (2018), "Mechanical properties of pervious concrete with recycled aggregate", Comput. Concrete, 21(6), 623-635. http://doi.org/10.12989/cac.2018.21.6.623.