• 제목/요약/키워드: circular steel tube

검색결과 187건 처리시간 0.017초

An approach for partial strengthening of circular RC columns using outer steel tube

  • Hwang, Ju-young;Kwak, Hyo-Gyoung
    • Steel and Composite Structures
    • /
    • 제38권6호
    • /
    • pp.739-749
    • /
    • 2021
  • This paper introduces an improved design equation to evaluate the resisting capacity of circular reinforced concrete (RC) columns partially strengthened with outer steel tube. When RC column members are required to be strengthened according to the change in the loadings considered and/or the deterioration progress in columns, wrapping up RC column with steel circular tube, which takes the form of concrete filled steel tube (CFST), has been popularly considered because of its structural advantage induced from the confinement effect. However, the relatively high construction cost of steel tube is restricting its use to the required region, while deriving the shape of a partial CFST column. To evaluate the resisting capacity of a partial CFST column, numerical analyses need to be performed, and a numerical model proposed in the previous study for the numerical analysis of full CFST columns is used to conduct parametric studies for the introduction of a design equation. The bond-slip effect developed along the interface between the in-filled concrete and the exterior steel tube is taken into consideration and the validity of the numerical model has been established through correlation studies between experimental data and numerical results for partial CFST circular columns. Moreover, parametric studies make it possible to introduce a design equation for determining the optimum length of outer steel tube which produces partial CFST circular columns.

Fatigue behavior of circular hollow tube and wood filled circular hollow steel tube

  • Malagi, Ravindra R.;Danawade, Bharatesh A.
    • Steel and Composite Structures
    • /
    • 제19권3호
    • /
    • pp.585-599
    • /
    • 2015
  • This paper presents the experimental work on fatigue life and specific fatigue strength of circular hollow sectioned steel tube and wood filled circular hollow section steel tube. Burning effect was observed in the case of circular hollow sectioned steel tube when it is subjected to Maximum bending moment of 19613.30 N-mm at 4200 rpm, but this did not happen in the case of wood filled hollow section. Statistical analysis was done based on the experimental data and relations have been built to predict the number of cycles for the applied stress or vice versa. The relations built in this paper can safely be applied for design of the fatigue life or fatigue strength of circular hollow sections and wood filled hollow sections. Results were validated by static specific bending strengths determined by ANSYS using a known applied load.

Behavior of circular thin-walled steel tube confined concrete stub columns

  • Ding, Fa-xing;Tan, Liu;Liu, Xue-mei;Wang, Liping
    • Steel and Composite Structures
    • /
    • 제23권2호
    • /
    • pp.229-238
    • /
    • 2017
  • This paper presents a combined numerical and theoretical study on the composite action between steel and concrete of circular steel tube confined concrete (STCC) stub columns under axial compressive loading with a full theoretical elasto-plastic model and finite element (FE) model in comparison with experimental results. Based on continuum mechanics, the elasto-plastic model for STCC stub columns was established and the analysis was realized by a FORTRAN program and the three dimensional FE model was developed using ABAQUS. The steel ratio of the circular STCC columns were defined in range of 0.5% to 2% to analyze the composite action between steel tube and concrete, and make a further study on the advantages of the circular STCC columns. By comparing the results using the elasto-plastic methods with the parametric analysis result of FE model, the appropriate friction coefficient between the steel tube and core concrete was defined as 0.4 to 0.6. Based on ultimate balance theory, the formula of ultimate load capacity applying to the circular STCC stub columns was developed.

Axial behavior of steel-jacketed concrete columns

  • Rupp, J.;Sezen, H.;Chaturvedi, S.
    • Steel and Composite Structures
    • /
    • 제16권1호
    • /
    • pp.59-75
    • /
    • 2014
  • A new concrete confinement model is developed to predict the axial load versus displacement behavior of circular columns under concentric axial load. The new confinement model is proposed for concrete filled steel tube columns as well as circular reinforced concrete columns with steel tube jacketing. Existing confinement models were evaluated and improved using available experimental data from different sets of columns tested under similar loading conditions. The proposed model is based on commonly used confinement models with an emphasis on modifying the effective confining pressure coefficient utilizing the strength of the unconfined concrete and the steel tube, the length of the column, and the thickness of the steel tube. The proposed model predicts the ultimate axial strength and the corresponding strain with an acceptable degree of accuracy while also highlighting the importance of the manner in which the steel tube is used.

Composite effects of circular concrete-filled steel tube columns under lateral shear load

  • Faxing Ding;Changbin Liao;Chang He;Wei Gao;Liping Wang;Fei Lyu;Yuanguang Qiu;Jianjun Yang
    • Computers and Concrete
    • /
    • 제31권2호
    • /
    • pp.123-137
    • /
    • 2023
  • To fully understand shear mechanisms and composite effects of circular concrete-filled steel tube (CFST) columns, systematic numerical investigations were conducted in this paper by improved finite element models. The triaxial plastic-damage constitutive model of the concrete and the interactions between the concrete and steel tube were considered. Afterwards, the critical and upper bound shear span ratios of the circular CFST column under lateral shear loading were determined. The composite effects between the two materials were analyzed by comparing the shear resistance with plain concrete column and hollow steel tube. In addition, a method that predicts the shear bearing capacity of a circular CFST column was proposed. The confining effects on the concrete core and the restraining effects on the steel tube were considered in this method. The proposed formula can predict more accurate results than the methods in different codes and references.

Behavior of Hybrid Double Skin Concrete Filled Circular Steel Tube Columns

  • Kim, Jin-Kook;Kwak, Hyo-Gyoung;Kwak, Ji-Hyun
    • Steel and Composite Structures
    • /
    • 제14권2호
    • /
    • pp.191-204
    • /
    • 2013
  • A hybrid double skin concrete filled (HDSCF) circular steel tube column is proposed in this study. The yield strength of the outer steel tube is larger than 690MPa and the inner tube has less strength. In order to achieve efficiency with the high strength outer tube, a feasibility study on reducing the thickness of the tube below the specified design codes for CFTs was conducted based on an experimental approach. The experiment also took variables such as thickness of the inner tube, hollow ratio, and strength of concrete into consideration to investigate the behavior of the HDSCF column. In order to estimate the applicability of design equations for CFTs to the HDSCF column, test results from CFT and HDSCF columns with design codes were compared. It was found that the axial compressive performance of the proposed HDSCF column is equivalent to that of the conventional CFT member irrespective of design variables. Furthermore, the design equation for a circular CFT given by EC4 is applicable to estimate the ultimate strength of the HDSCF circular steel tube column.

Seismic performance of the thin-walled square CFST columns with lining steel tubes

  • Wang, Xuanding;Liu, Jiepeng;Wang, Xian-Tie;Cheng, Guozhong;Ding, Yan
    • Steel and Composite Structures
    • /
    • 제44권3호
    • /
    • pp.423-436
    • /
    • 2022
  • This paper proposes an innovative thin-walled square concrete filled steel tubular (CFST) column with an octagonal/circular lining steel tube, in which the outer steel tube and the inner liner are fabricated independently of each other and connected by slot-weld or self-tapping screw connections. Twelve thin-walled square CFST columns were tested under quasi-static loading, considering the parameters of liner type, connection type between the square tube and liner, yield strength of steel tube, and the axial load ratio. The seismic performance of the thin-walled square CFST columns is effectively improved by the octagonal and circular liners, and all the liner-stiffened specimens showed an excellent ductile behavior with the ultimate draft ratios being much larger than 1/50 and the ductility coefficients being generally higher than 4.0. The energy dissipation abilities of the specimens with circular liners and self-tapping screw connections were superior to those with octagonal liner and slot-weld connections. Based on the test results, both the finite element (FE) and simplified theoretical models were established, considering the post-buckling strength of the thin-walled square steel tube and the confinement effect of the liners, and the proposed models well predicted the hysteretic behavior of the liner-stiffened specimens.

Analysis of circular steel tube confined UHPC stub columns

  • Hoang, An Le;Fehling, Ekkehard
    • Steel and Composite Structures
    • /
    • 제23권6호
    • /
    • pp.669-682
    • /
    • 2017
  • The use of ultra high performance concrete (UHPC) in composite columns offers numerous structural benefits, and has received recent research attention. However, the information regarding the behavior of steel tube confined concrete (STCC) columns employing UHPC has been extremely limited. Thus, this paper presents an overview of previous experimental studies on circular STCC columns with taking into account various concrete strengths to point out their distinctive features. The effect of the confinement factor and the diameter to thickness ratio on both strength and ductility in circular STCC columns employing UHPC was investigated. The applicability of current design codes such as EC4, AISC, AIJ and some available analytical models for concrete confined by steel tube was also validated by the comparison of ultimate loads between the prediction and the test results of Schneider (2006) and Xiong (2012). To predict the stress-strain curves for confined UHPC in circular STCC stub columns, a simplified model was proposed and verified by the comparison with experimental stress-strain curves.

Investigation on circular and octagonal concrete-filled double skinned steel tubular short columns under axial compression

  • R, Manigandan;Kumar, Manoj;Shedge, Hrishikesh N.
    • Steel and Composite Structures
    • /
    • 제44권1호
    • /
    • pp.141-154
    • /
    • 2022
  • This paper describes the experimental and numerical investigation on circular and octagonal CFDST short columns under concentric loading to study their responses to various internal circular steel tube sizes by the constant cross-sectional dimensions of the external circular and octagonal steel tube. The non-linear finite element analysis of circular and octagonal CFDST columns was executed using the ABAQUS to forecast and compare the axial behavior influenced by the various sizes of internal circular steel tubes. The study shows that the axial compressive strength and ductility of circular and octagonal CFDST columns were significantly influenced by inner steel tubes with the strengths of constituent materials.

Experimental study on circular CFST short columns with intermittently welded stiffeners

  • Thomas, Job;Sandeep, T.N.
    • Steel and Composite Structures
    • /
    • 제29권5호
    • /
    • pp.659-667
    • /
    • 2018
  • This paper deals with the experimental study on strength the strength and deformation characteristics of short circular Concrete Filled Steel Tube (CFST) columns. Effect of vertical stiffeners on the behavior of the column is studied under axial compressive loading. Intermittently welded vertical stiffeners are used to strengthen the tubes. Stiffeners are attached to the inner surface of tube by welding through pre drilled holes on the tube. The variable of the study is the spacing of the weld between stiffeners and circular tube. A total of 5 specimens with different weld spacing (60 mm, 75 mm, 100 mm, 150 mm and 350 mm) were prepared and tested. Short CFST columns of height 350 mm, outer tube diameter of 165 mm and thickness of 4.5 mm were used in the study. Concrete of cube compressive strength $41N/mm^2$ and steel tubes with yield strength $310N/mm^2$ are adopted. The test results indicate that the strength and deformation of the circular CFST column is found to be significantly influenced by the weld spacing. The ultimate axial load carrying capacity was found to increase by 11% when the spacing of weld is reduced from 350 mm to 60 mm. The vertical stiffeners are found to effective in enhancing the initial stiffness and ductility of CFST columns. The prediction models were developed for strength and deformation of CFST columns. The prediction is found to be in good agreement with the corresponding test data.