Acknowledgement
The authors would like to acknowledge the funding provided by the Universidad Industrial de Santander-UIS, Colombia.
References
- Achaoui, Y., Antonakakis, T., Brule, S., Craster, R.V., Enoch, S. and Guenneau, S. (2017), "Clamped seismic metamaterials: Ultra-low frequency stop bands", New J. Phys., 19(6), 1-13.
- Achaoui, Y., Ungureanu, B., Enoch, S., Brule, S. and Guenneau, S. (2016), "Seismic waves damping with arrays of inertial resonators", Extr. Mech. Lett., 8, 30-37. https://doi.org/10.1016/j.eml.2016.02.004.
- Ai, L. and Gao, X.L. (2019), "Topology optimization of 2-D mechanical metamaterials using a parametric level set method combined with a meshfree algorithm", Compos. Struct., 229, 111318. https://doi.org/10.1016/j.compstruct.2019.111318.
- Al-Mulla, T. and Buehler, M.J. (2015), "Origami: Folding creases through bending", Nature Mater., 14(4), 366-368. https://doi.org/10.1038/nmat4258.
- Alderson, A., Alderson, K.L., Attard, D., Evans, K.E., Gatt, R., Grima, J.N., Miller, W., Ravirala, N., Smith, C.W. and Zied, K. (2010), "Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading", Compos. Sci. Technol., 70(7), 1042-1048. https://doi.org/10.1016/j.compscitech.2009.07.009.
- Babilio, E., Fabbrocino, F., Durand, M. and Fraternali, F. (2017), "On the mechanics of tetrakis-like lattices in the stretch-dominated regime", Extr. Mech. Lett., 15, 57-62. https://doi.org/10.1016/j.eml.2017.06.003.
- Bacigalupo, A. and Gambarotta, L. (2016), "Simplified modelling of chiral lattice materials with local resonators", Int. J. Solid. Struct., 83, 126-141. https://doi.org/10.1016/j.ijsolstr.2016.01.005.
- Baughman, R.H., Stafstrom, S., Cui, C. and Dantas, S.O. (1998), "Materials with negative compressibilities in one or more dimensions", Sci., 279(5356), 1522-1524. https://doi.org/10.1126/science.279.5356.1522.
- Bekdas, G. and Nigdeli, S.M. (2011), "Estimating optimum parameters of tuned mass dampers using harmony search", Eng. Struct., 33(9), 2716-2723. https://doi.org/10.1016/j.engstruct.2011.05.024.
- Bendsoe, M.P. and Kikuchi, N. (1988), "Generating optimal topologies in structural design using a homogenization method", Comput. Meth. Appl. Mech. Eng., 71, 197-224. https://doi.org/10.1016/0045-7825(88)90086-2.
- Bertoldi, K., Vitelli, V., Christensen, J. and van Hecke, M. (2017), "Flexible mechanical metamaterials", Nature Rev. Mater., 2(11), 1-11. https://doi.org/10.1038/natrevmats.2017.66.
- Boatti, E., Vasios, N. and Bertoldi, K. (2017), "Origami metamaterials for tunable thermal expansion", Adv. Mater., 29(26), 1-6. https://doi.org/10.1002/adma.201700360.
- Bose, J. C. (1898), "On the rotation of plane of polarisation of electric wave by a twisted structure", Proc. Roy. Soc. London, 63, 146-152. https://doi.org/10.1098/rspl.1898.0019.
- Braz-Cesar, M. and Carneiro De Barros, R. (2013), "Passive control of civil engineering structures", 4th International Conference on Integrity, Reliability and Failure of Mechanical Systems, 1-12.
- Brule, S., Enoch, S. and Guenneau, S. (2017a), "Sols structures sous sollicitation dynamique : des metamateriaux en geotechnique", Revue Francaise de Geotechnique, 151, 4. https://doi.org/10.1051/geotech/2017010.
- Brule, S., Enoch, S. and Guenneau, S. (2020), "Emergence of seismic metamaterials: Current state and future perspectives", Phys. Lett. A, 384(1), 126034. https://doi.org/10.1016/j.physleta.2019.126034.
- Brule, S., Enoch, S., Guenneau, S. and Craster, R.V. (2017b), "Seismic metamaterials: Controlling surface rayleigh waves using analogies with electromagnetic metamaterials", World Scientific Handbook of Metamaterials and Plasmonics: Volume 2: Elastic, Acoustic, and Seismic Metamaterials, 301-337.
- Brule, S., Javelaud, E.H., Enoch, S. and Guenneau, S. (2017c), "Flat lens effect on seismic waves propagation in the subsoil", Scientif. Report., 7(1), 1-9. https://doi.org/10.1038/s41598-017-17661-y.
- Brule, S., Ungureanu, B., Achaoui, Y., Diatta, A., Aznavourian, R., Antonakakis, T., Craster, R., Enoch, S. and Guenneau, S. (2017d), "Metamaterial-like transformed urbanism", Innov. Infrastr. Solut., 2(1), 1-11. https://doi.org/10.1007/s41062-017-0063-x.
- Buckmann, T., Kadic, M., Schittny, R. and Wegener, M. (2015), "Mechanical metamaterials with anisotropic and negative effective mass-density tensor made from one constituent material", Physica Status Solidi (B) Bas. Res., 252(7), 1671-1674. https://doi.org/10.1002/pssb.201451698.
- Buckmann, T., Schittny, R., Thiel, M., Kadic, M., Milton, G.W. and Wegener, M. (2014a), "On three-dimensional dilational elastic metamaterials", New J. Phys., 16(3), 033032. https://doi.org/10.1088/1367-2630/16/3/033032
- Buckmann, T., Thiel, M., Kadic, M., Schittny, R. and Wegener, M. (2014b), "An elasto-mechanical unfeelability cloak made of pentamode metamaterials", Nature Commun., 5, 1-6. https://doi.org/10.1038/ncomms5130.
- Cai, W., Gladysiak, A., Aniola, M., Smith, V.J., Barbour, L.J. and Katrusiak, A. (2015), "Giant negative area compressibility tunable in a soft porous framework material", J. Am. Chem. Soc., 137(29), 9296-9301. https://doi.org/10.1021/jacs.5b03280.
- Calabrese, A., Losanno, D., Spizzuoco, M., Strano, S. and Terzo, M. (2019), "Recycled Rubber Fiber Reinforced Bearings (RR-FRBs)as base isolators for residential buildings in developing countries: The demonstration building of Pasir Badak, Indonesia", Eng. Struct., 192, 126-144. https://doi.org/10.1016/j.engstruct.2019.04.076.
- Calvi, P.M. and Calvi, G.M. (2018), "Historical development of friction-based seismic isolation systems", Soil Dyn. Earthq. Eng., 106, 14-30. https://doi.org/10.1016/j.soildyn.2017.12.003.
- Casablanca, O., Ventura, G., Garesci, F., Azzerboni, B., Chiaia, B., Chiappini, M. and Finocchio, G. (2018), "Seismic isolation of buildings using composite foundations based on metamaterials", J. Appl. Phys., 123(17), 174903. https://doi.org/10.1063/1.5018005.
- Chen, B.J., Tsai, C., Chung, L. and Chiang, T.C. (2006), "Seismic behavior of structures isolated with a hybrid system of rubber bearings", Struct. Eng. Mech., 22(6), 761-783. https://doi.org/10.12989/sem.2006.22.6.761.
- Chen, B.G.G., Upadhyaya, N. and Vitelli, V. (2014), "Nonlinear conduction via solitons in a topological mechanical insulator", Proc. Nat. Acad. Sci., 111(36), 13004-13009. https://doi.org/10.1073/pnas.1405969111.
- Chen, W. and Huang, X. (2019), "Topological design of 3D chiral metamaterials based on couple-stress homogenization", J. Mech. Phys. Solid., 131, 372-386. https://doi.org/10.1016/j.jmps.2019.07.014.
- Chen, Y.J., Scarpa, F., Liu, Y.J. and Leng, J.S. (2013), "Elasticity of anti-tetrachiral anisotropic lattices", Int. J. Solid. Struct., 50(6), 996-1004. https://doi.org/10.1016/j.ijsolstr.2012.12.004.
- Chen, Z., Wu, T., Nian, G., Shan, Y., Liang, X., Jiang, H. and Qu, S. (2019), "Ron resch origami pattern inspired energy absorption structures", J. Appl. Mech., Trans., 86(1), 011005. https://doi.org/10.1115/1.4041415.
- Cheung, K.C., Tachi, T., Calisch, S. and Miura, K. (2014), "Origami interleaved tube cellular materials", Smart Mater. Struct., 23(9), 094012. https://doi.org/10.1088/0964-1726/23/9/094012
- Choi, H. and Kim, J. (2010), "New installation scheme for viscoelastic dampers using cables", Can. J. Civil Eng., 37(9), 1201-1211. https://doi.org/10.1139/L10-068.
- Colombi, A., Colquitt, D., Roux, P., Guenneau, S. and Craster, R.V. (2016a), "A seismic metamaterial: The resonant metawedge", Scientif. Report., 6(1), 1-6. https://doi.org/10.1038/srep27717 (2016).
- Colombi, A., Roux, P., Guenneau, S., Gueguen, P. and Craster, R.V. (2016b), "Forests as a natural seismic metamaterial: Rayleigh wave bandgaps induced by local resonances", Scientif. Report., 6(1), 1-7. https://doi.org/10.1038/srep19238.
- Cummer, S.A., Christensen, J. and Alu, A. (2016), "Controlling sound with acoustic metamaterials", Nature Rev. Mater., 1(3), 1-13. https://doi.org/10.1038/natrevmats.2016.1.
- D'Alessandro, L., Zega, V., Ardito, R. and Corigliano, A. (2018), "3D auxetic single material periodic structure with ultra-wide tunable bandgap", Scientif. Report., 8(1), 1-9. https://doi.org/10.1038/s41598-018-19963-1.
- Datta, T.K. (2003), "A state-of-the-art review on active control of structures", ISET J. Earthq. Technol., 40(1), 1-17.
- Dong, H.W., Zhao, S.D., Wei, P., Cheng, L., Wang, Y.S. and Zhang, C. (2019), "Systematic design and realization of double-negative acoustic metamaterials by topology optimization", Acta Materialia, 172, 102-120. https://doi.org/10.1016/j.actamat.2019.04.042.
- Elsevier (2020), SCOPUS, https://www.scopus.com/home.uri.
- Fabbrocino, F. and Amendola, A. (2017), "Discrete-to-continuum approaches to the mechanics of pentamode bearings", Compos. Struct., 167, 219-226. https://doi.org/10.1016/j.compstruct.2017.01.073.
- Fabbrocino, F., Amendola, A., Benzoni, G. and Fraternali, F. (2015), "Seismic application of pentamode lattices", Ing. Sismica, 33(1-2), 62-70.
- Fabbrocino, F. and Carpentieri, G. (2017), "Three-dimensional modeling of the wave dynamics of tensegrity lattices", Compos. Struct., 173, 9-16. https://doi.org/10.1016/j.compstruct.2017.03.102.
- Filipov, E.T., Tachi, T., Paulino, G.H. and Weitz, D. A. (2015), "Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials", Proc. Nat. Acad. Sci., 112(40), 12321-12326. https://doi.org/10.1073/pnas.1509465112.
- Finocchio, G., Casablanca, O., Ricciardi, G., Alibrandi, U., Garesci, F., Chiappini, M. and Azzerboni, B. (2014), "Seismic metamaterials based on isochronous mechanical oscillators", Appl. Phys. Lett., 104(19), 191903. https://doi.org/10.1063/1.4876961.
- Fleck, N.A., Deshpande, V.S. and Ashby, M.F. (2010a), "Micro-architectured materials: Past, present and future", Proc. Roy. Soc. A: Math., Phys. Eng. Sci., 466(2121), 2495-2516. https://doi.org/10.1098/rspa.2010.0215.
- Florijn, B., Coulais, C. and van Hecke, M. (2014), "Programmable Mechanical Metamaterials", Phys. Rev. Lett., 113(17), 175503. https://doi.org/10.1103/PhysRevLett.113.175503.
- Fraternali, F. (2016), "Seismic isolator device", Italy.
- Fraternali, F., Amendola, A. and Benzoni, G. (2018), "Innovative seismic isolation devices based on lattice materials: A review", Ingegneria Sismica, 35(4), 93-113.
- Fraternali, F., Carpentieri, G., Montuori, R., Amendola, A. and Benzoni, G. (2015), "On the use of mechanical metamaterials for innovative seismic isolations systems", COMPDYN 2015 - 5th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, 349-358, May.
- Frenzel, T., Kadic, M. and Wegener, M. (2017), "Three-dimensional mechanical metamaterials with a twist", Sci., 358(6366), 1072-1074. https://doi.org/10.1126/science.aao4640.
- Forrai, A., Hashimoto, S., Funato, H. and Kamiyama. K. (2001), "Structural control of flexible structures", Comput. Control Eng. J., IET, 12(6), 257-262. https://doi.org/10.1049/cce:20010602
- Gao, J., Xue, H., Gao, L. and Luo, Z. (2019), "Topology optimization for auxetic metamaterials based on isogeometric analysis", Comput. Meth. Appl. Mech. Eng., 352, 211-236. https://doi.org/10.1016/j.cma.2019.04.021.
- Gatt, R., Attard, D., Farrugia, P.S., Azzopardi, K.M., Mizzi, L., Brincat, J.P. and Grima, J.N. (2013), "A realistic generic model for anti-tetrachiral systems", Physica Status Solidi (B) Bas. Res., 250(10), 2012-2019. https://doi.org/10.1002/pssb.201384246.
- Gibson, L.J. and Ashby, M.F. (1997), Cellular Solids Structure and Properties, Cambridge University Press, Cambridge.
- Goodwin, A.L., Keen, D.A. and Tucker, M.G. (2008), "Large negative linear compressibility of Ag3[Co(CN)6]", Proc. Nat. Acad. Sci., 105(48), 18708-18713. https://doi.org/10.1073/pnas.0804789105.
- Grima, J.N., Gatt, R. and Farrugia, P.S. (2008), "On the properties of auxetic meta-tetrachiral structures", Physica Status Solidi (B) Bas. Res., 245(3), 511-520. https://doi.org/10.1002/pssb.200777704.
- Gurtner, G. and Durand, M. (2014), "Stiffest elastic networks", Proc. Roy. Soc. A: Math., Phys. Eng. Sci., 470(2164), 20130611. https://doi.org/10.1098/rspa.2013.0611.
- Hanna, B.H., Lund, J.M., Lang, R.J., Magleby, S.P. and Howell, L.L. (2014), "Waterbomb base: A symmetric single-vertex bistable origami mechanism", Smart Mater. Struct., 23(9), 094009. https://doi.org/10.1088/0964-1726/23/9/094009
- Huang, J., Liu, W. and Shi, Z. (2017), "Surface-wave attenuation zone of layered periodic structures and feasible application in ground vibration reduction", Constr. Build. Mater., 141, 1-11. https://doi.org/10.1016/j.conbuildmat.2017.02.153.
- Hyun, S. and Torquato, S. (2002), "Optimal and manufacturable two-dimensional, Kagome-like cellular solids", J. Mater. Res., 17(1), 137-144. https://doi.org/10.1557/JMR.2002.0021.
- Ishida, S., Suzuki, K. and Shimosaka, H. (2017), "Design and experimental analysis of origami-inspired vibration isolator with Quasi-Zero-Stiffness characteristic", J. Vib. Acoust., Trans., 139(5), 1-5. https://doi.org/10.1115/1.4036465.
- Jabary, R.N. and Madabhushi, S.P.G. (2015), "Tuned mass damper effects on the response of multi-storied structures observed in geotechnical centrifuge tests", Soil Dyn. Earthq. Eng., 77, 373-380. https://doi.org/10.1016/j.soildyn.2015.06.013.
- Jangid, R. (1995), "Dynamic characteristics of structures with multiple tuned mass dampers", Struct. Eng. Mech., 3(5), 497-509. https://doi.org/10.12989/sem.1995.3.5.497.
- Jiang, Y. and Li, Y. (2018), "3D printed auxetic mechanical metamaterial with chiral cells and re-entrant cores", Scientif. Report., 8(1), 1-11. https://doi.org/10.1038/s41598-018-20795-2.
- Jung, H.J., Spencer Jr, B., Ni, Y. and Lee, I. (2004), "State-of-the-art of semiactive control systems using MR fluid dampers in civil engineering applications", Struct. Eng. Mech., 17(3-4), 493-526. https://doi.org/10.12989/sem.2004.17.3_4.493.
- Kadic, M., Buckmann, T., Schittny, R. and Wegener, M. (2013), "On anisotropic versions of three-dimensional pentamode metamaterials", New J. Phys., 15(2), 023029. https://doi.org/10.1088/1367-2630/15/2/023029
- Kadic, M., Buckmann, T., Stenger, N., Thiel, M. and Wegener, M. (2012), "On the practicability of pentamode mechanical metamaterials", Appl. Phys. Lett., 100(19), 191901. https://doi.org/10.1063/1.4709436.
- Kadic, M., Milton, G.W., van Hecke, M. and Wegener, M. (2019), "3D metamaterials", Nature Rev. Phys., 1(3), 198-210. https://doi.org/10.1038/s42254-018-0018-y.
- Kane, C.L. and Lubensky, T.C. (2013), "Topological boundary modes in isostatic lattices", Nat. Phys., 10(1), 39-45. https://doi.org/10.1038/nphys2835.
- Karpov, E.G. (2017), "Structural metamaterials with Saint-Venant edge effect reversal", Acta Materialia, 123, 245-254. https://doi.org/10.1016/j.actamat.2016.10.046.
- Kitamura, H., Kitamura, Y., Ito, M. and Sakamoto, M. (2004), "Analysis of the present situation of response control systems in Japan based on building survey database", J. JPN Assoc. Earthq. Eng., 4(3), 265-277. https://doi.org/10.5610/jaee.4.3_265.
- Lakes, R. (1993), "Advances in negative poisson's ratio materials", Adv. Mater., 5(4), 293-296. https://doi.org/10.1002/adma.19930050416.
- Lakes, R.S. (1993), "Materials with structural hierarchy", Nature, 361, 511-515. https://doi.org/10.1038/361511a0.
- Lakes, R. and Wojciechowski, K.W. (2008), "Negative compressibility, negative Poisson's ratio, and stability", Physica Status Solidi (B) Bas. Res., 245(3), 545-551. https://doi.org/10.1002/pssb.200777708.
- Le, D.H., Xu, Y., Tentzeris, M.M. and Lim, S. (2020), "Transformation from 2D meta-pixel to 3D meta-pixel using auxetic kirigami for programmable multifunctional electromagnetic response", Extr. Mech. Lett., 36, 100670. https://doi.org/10.1016/j.eml.2020.100670.
- Li, S. and Wang, K.W. (2015), "Fluidic origami: A plant-inspired adaptive structure with shape morphing and stiffness tuning", Smart Mater. Struct., 24(10), 105031. https://doi.org/10.1088/0964-1726/24/10/105031
- Li, X. and Gao, H. (2016), "Mechanical metamaterials: Smaller and stronger", Nature Mater., 15(4), 373-374. https://doi.org/10.1038/nmat4591.
- Liu, S., Lv, W., Chen, Y. and Lu, G. (2016), "Deployable prismatic structures with rigid origami patterns", J. Mech. Robot., 8(3), 031002. https://doi.org/10.1115/1.4031953.
- Lorato, A., Innocenti, P., Scarpa, F., Alderson, A., Alderson, K.L., Zied, K.M., Ravirala, N., Miller, W., Smith, C.W. and Evans, K.E. (2010), "The transverse elastic properties of chiral honeycombs", Compos. Sci. Technol., 70(7), 1057-1063. https://doi.org/10.1016/j.compscitech.2009.07.008.
- De Luca, A. and Guidi, L.G. (2019), "State of art in the worldwide evolution of base isolation design", Soil Dyn. Earthq. Eng., 125(2019), 105722. https://doi.org/10.1016/j.soildyn.2019.105722.
- Lv, C., Krishnaraju, D., Konjevod, G., Yu, H. and Jiang, H. (2014), "Origami based mechanical metamaterials", Scientif. Report., 4, 5979. https://doi.org/10.1038/srep05979.
- Maldovan, M. (2013), "Sound and heat revolutions in phononics", Nature, 503(7475), 209-217. https://doi.org/10.1038/nature12608.
- Mao, X. and Lubensky, T.C. (2011), "Coherent potential approximation of random nearly isostatic kagome lattice", Phys. Rev. E-Stat., Nonlin. Soft Mat. Phys., 83(1), 1-14. https://doi.org/10.1103/PhysRevE.83.011111.
- Mao, X., Souslov, A., Mendoza, C.I. and Lubensky, T.C. (2015), "Mechanical instability at finite temperature", Nature Commun., 6, 1-8. https://doi.org/10.1038/ncomms6968 (2015)..
- Martin, A., Kadic, M., Schittny, R., Buckmann, T. and Wegener, M. (2012), "Phonon band structures of three-dimensional pentamode metamaterials", Phys. Rev. B-Condens. Mat. Mater. Phys., 86(15), 2-6. https://doi.org/10.1103/PhysRevB.86.155116.
- Mazza, F. (2017), "Residual seismic load capacity of fire-damaged rubber bearings of R.C. base-isolated buildings", Eng. Fail. Anal., 79, 951-970. https://doi.org/10.1016/j.engfailanal.2017.06.011.
- Miller, W., Smith, C.W., Scarpa, F. and Evans, K.E. (2010), "Flatwise buckling optimization of hexachiral and tetrachiral honeycombs", Compos. Sci. Technol., 70(7), 1049-1056. https://doi.org/10.1016/j.compscitech.2009.10.022.
- Milton, G.W. (1992), "Composite materials with poisson's ratios close to - 1", J. Mech. Phys. Solid., 40(5), 1105-1137. https://doi.org/10.1016/0022-5096(92)90063-8.
- Milton, G.W. (2016), "Analytic materials", Proc. Roy. Soc. A: Math. Phys. Eng. Sci., 472(2195), 20160613. https://doi.org/10.1098/rspa.2016.0613.
- Milton, G.W., Briane, M. and Willis, J.R. (2006), "On cloaking for elasticity and physical equations with a transformation invariant form", New J. Phys., 8(10), 248. https://doi.org/10.1088/1367-2630/8/10/248
- Milton, G.W. and Cherkaev, A.V. (1995), "Which elasticity tensors are realizable?", J. Eng. Mater. Technol., Trans., 117(4), 483-493. https://doi.org/10.1115/1.2804743.
- Mitchell, S.J., Pandolfi, A. and Ortiz, M. (2014), "Metaconcrete: Designed aggregates to enhance dynamic performance", J. Mech. Phys. Solid., 65(1), 69-81. https://doi.org/10.1016/j.jmps.2014.01.003.
- Miura, K. (1975), "New structural form of sandwich core", J. Aircraft, 12(5), 437-441. https://doi.org/10.2514/3.44468.
- Mousanezhad, D., Haghpanah, B., Ghosh, R., Hamouda, A.M., Nayeb-Hashemi, H. and Vaziri, A. (2016), "Elastic properties of chiral, anti-chiral, and hierarchical honeycombs: A simple energy-based approach", Theor. Appl. Mech. Lett., 6(2), 81-96. https://doi.org/10.1016/j.taml.2016.02.004.
- Mu, D., Shu, H., Zhao, L. and An, S. (2020), "A review of research on seismic metamaterials", Adv. Eng. Mater., 22(4), 1-23. https://doi.org/10.1002/adem.201901148.
- Muhlestein, M.B. and Haberman, M.R. (2016), "A micromechanical approach for homogenization of elastic metamaterials with dynamic microstructure", Proc. Roy. Soc. A: Math. Phys. Eng. Sci., 472(2192), 20160438. https://doi.org/10.1098/rspa.2016.0438.
- Munn, R.W. (1972), "Role of the elastic constants in negative thermal expansion of axial solids", J. Phys. C: Solid State Phys., 5(5), 535-542. https://doi.org/10.1088/0022-3719/5/5/005
- Neville, R.M., Scarpa, F. and Pirrera, A. (2016), "Shape morphing Kirigami mechanical metamaterials", Scientif. Report., 6, 1-12. https://doi.org/10.1038/srep31067.
- Ng, C. and Xu, Y. (2006), "Seismic response control of a building complex utilizing passive friction damper: Analytical study", Struct. Eng. Mech., 22(1), 85-105. https://doi.org/10.12989/sem.2006.22.1.085.
- Nicolaou, Z.G. and Motter, A.E. (2012), "Mechanical metamaterials with negative compressibility transitions", Nature Materi., 11(7), 608-613. https://doi.org/10.1038/nmat3331.
- Norris, A.N. (2014), "Mechanics of elastic networks", Proc. Roy. Soc. A: Math. Phys. Eng. Sci., 470(2172), 20140522. https://doi.org/10.1098/rspa.2014.0522.
- Oviedo, J.A. and Duque, M. del P. (2009), "Disipadores histereticos metalicos como sistemas de control de respuesta sismica en edificaciones", Revista EIA, (6), 105-120.
- Palermo, A. and Marzani, A. (2018), "Control of Love waves by resonant metasurfaces", Scientif. Report., 8(1), 1-8. https://doi.org/10.1038/s41598-018-25503-8.
- Paulose, J., Chen, B.G.G. and Vitelli, V. (2015), "Topological modes bound to dislocations in mechanical metamaterials", Nature Phys., 11(2), 153-156. https://doi.org/10.1038/nphys3185.
- Pendry, J.B. (2000), "Negative refraction makes a perfect lens", Phys. Rev. Lett., 85(18), 3966-3969. https://doi.org/10.1103/PhysRevLett.85.3966.
- Pong, W. and Tsai, C. (1995), "Seismic study of buildings with viscoelastic dampers", Struct. Eng. Mech., 3(6), 596-581. https://doi.org/10.12989/sem.1995.3.6.596.
- Pozniak, A.A. and Wojciechowski, K.W. (2014), "Poisson's ratio of rectangular anti-chiral structures with size dispersion of circular nodes", Physica Status Solidi (B) Bas. Res., 251(2), 367-374. https://doi.org/10.1002/pssb.201384256.
- Prall, D. and Lakes, R.S. (1997), "Properties of chiral honeycomb with Poisson's ratio of -1", Int. J. Mech. Sci., 39(3), 305-314. https://doi.org/10.1016/S0020-7403(96)00025-2.
- Queheillalt, D.T. and Wadley, H.N.G. (2005), "Cellular metal lattices with hollow trusses", Acta Materialia, 53(2), 303-313. https://doi.org/10.1016/j.actamat.2004.09.024.
- Ren, X., Shen, J., Tran, P., Ngo, T.D. and Xie, Y.M. (2018), "Auxetic nail: Design and experimental study", Compos. Struct., 184, 288-298. https://doi.org/10.1016/j.compstruct.2017.10.013.
- Resch, R. (1968), "Experimental Structures", Architect-Researcher Conference, Proceedings of the American Institute of Architects.
- Resch, R. (1970), "The design and analysis of kinematic folded plate systems", Proceedings of IASS Symposium on Folded Plates and Prismatic Structures.
- Resch, R. and Christiansen, H. (1970), "Kinematic folded plate system", IASS Symposium.
- Sadeghi, S. and Li, S. (2019), "Fluidic origami cellular structure with asymmetric Quasi-Zero stiffness for low-frequency vibration isolation", Smart Mater. Struct., 28, 11-14.
- Schenk, M. and Guest, S.D. (2013), "Geometry of Miura-folded metamaterials", Proc. Nat. Acad. Sci., 110(9), 3276-3281. https://doi.org/10.1073/pnas.1217998110.
- Schittny, R., Buckmann, T., Kadic, M. and Wegener, M. (2013a), "Elastic measurements on macroscopic three-dimensional pentamode metamaterials", Appl. Phys. Lett., 103(23), 231905. https://doi.org/10.1063/1.4838663
- Schittny, R., Kadic, M., Guenneau, S. and Wegener, M. (2013b), "Experiments on transformation thermodynamics: molding the flow of heat", Phys. Rev. Lett., 110(19), 195901. https://doi.org/10.1103/PhysRevLett.110.195901.
- Shan, S., Kang, S.H., Wang, P., Qu, C., Shian, S., Chen, E.R. and Bertoldi, K. (2014), "Harnessing multiple folding mechanisms in soft periodic structures for tunable control of elastic waves", Adv. Function. Mater., 24(31), 4935-4942. https://doi.org/10.1002/adfm.201400665.
- Shim, J., Shan, S., Kosmrlj, A., Kang, S.H., Chen, E.R., Weaver, J.C. and Bertoldi, K. (2013), "Harnessing instabilities for design of soft reconfigurable auxetic/chiral materials", Soft Mat., 9(34), 8198. https://doi.org/10.1039/C3SM51148K.
- Shyu, T.C., Damasceno, P.F., Dodd, P.M., Lamoureux, A., Xu, L., Shlian, M., Shtein, M., Glotzer, S.C. and Kotov, N.A. (2015), "A kirigami approach to engineering elasticity in nanocomposites through patterned defects", Nature Mater., 14(8), 785-789. https://doi.org/10.1038/nmat4327.
- Sigmund, O. (1995), "Tailoring materials with prescribed elastic properties", Mech. Mater., 20(4), 351-368. https://doi.org/10.1016/0167-6636(94)00069-7.
- Silverberg, J.L., Evans, A.A., McLeod, L., Hayward, R.C., Hull, T., Santangelo, C.D. and Cohen, I. (2014), "Using origami design principles to fold reprogrammable mechanical metamaterials", Sci., 345(6197), 647-650. https://doi.org/10.1126/science.1252876.
- Silverberg, J.L., Na, J.H., Evans, A.A., Liu, B., Hull, T.C., Santangelo, C.D., Lang, R.J., Hayward, R.C. and Cohen, I. (2015), "Origami structures with a critical transition to bistability arising from hidden degrees of freedom", Nature Mater., 14(4), 389-393. https://doi.org/10.1038/nmat4232.
- Smith, D.R., Pendry, J.B. and Wiltshire, M.C.K. (2004), "Metamaterials and negative refractive index", Sci., 305(5685), 788-792. https://doi.org/10.1126/science.1096796.
- Song, J., Chen, Y. and Lu, G. (2012), "Axial crushing of thin-walled structures with origami patterns", Thin Wall. Struct., 54, 65-71. https://doi.org/10.1016/j.tws.2012.02.007.
- Soong, T.T. and Spencer, B.F. (2000), "Active, semi-active and hybrid control of structures", Bull. NZ Soc. Earthq. Eng., 33(3), 387-402. https://doi.org/10.5459/bnzsee.33.3.387-402.
- Soukoulis, C.M. and Wegener, M. (2011), "Past achievements and future challenges in the development of three-dimensional photonic metamaterials", Nature Photon., 5(9), 523-530. https://doi.org/10.1038/nphoton.2011.154.
- Spadoni, A. and Ruzzene, M. (2012), "Elasto-static micropolar behavior of a chiral auxetic lattice", J. Mech. Phys. Solid., 60(1), 156-171. https://doi.org/10.1016/j.jmps.2011.09.012.
- Spadoni, A., Ruzzene, M., Gonella, S. and Scarpa, F. (2009), "Phononic properties of hexagonal chiral lattices", Wave Motion, 46(7), 435-450. https://doi.org/10.1016/j.wavemoti.2009.04.002.
- Spencer, B.F. and Soong, T.T. (1999), "New applications and development of active, semi-active and hybrid control techniques for seismic and non-seismic vibrations in the USA", Proceedings of International Post-SMiRT Conference Seminar on Seismic Isolation, Passive Energy Dissipation and Active Control of Vibration of Structures, Cheju, Korea.
- Symans, M.D., Charney, F.A., Whittaker, A.S., Constantinou, M.C., Kircher, C.A., Johnson, M.W. and McNamara, R.J. (2008), "Energy dissipation systems for seismic applications: Current practice and recent developments", J. Struct. Eng., 134(1), 3-21. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:1(3).
- Tachi, T. (2013), "Designing freeform origami tessellations by generalizing resch's patterns", J. Mech. Des., Trans., 135(11), 1-10. https://doi.org/10.1115/1.4025389.
- Tachi, T. and Miura, K. (2012), "Rigid-foldable cylinders and cells", J. Int. Assoc. Shell Spat. Struct., 53(4), 217-226.
- Tang, Y., Lin, G., Yang, S., Yi, Y.K., Kamien, R.D. and Yin, J. (2017), "Programmable Kiri-Kirigami Metamaterials", Adv. Mater., 29(10), 1-9. https://doi.org/10.1002/adma.201604262.
- Torrents, A., Schaedler, T.A., Jacobsen, A.J., Carter, W.B. and Valdevit, L. (2012), "Characterization of nickel-based microlattice materials with structural hierarchy from the nanometer to the millimeter scale", Acta Materialia, 60(8), 3511-3523. https://doi.org/10.1016/j.actamat.2012.03.007.
- Ungureanu, B., Achaoui, Y., Enoch, S., Brule, S. and Guenneau, S. (2015), "Auxetic-like metamaterials as novel earthquake protections", arXiv preprint arXiv:1510.08785.
- van Eck, N.J. and Waltman, L. (2010), "Software survey: VOSviewer, a computer program for bibliometric mapping", Scientometr., 84(2), 523-538. https://doi.org/10.1007/s11192-009-0146-3.
- Veselago, V.G. (1968), "The electrodynamics of the substances with simultaneously negative values of є and μ", Soviet Phys. Uspekhi, 10(4), 509-514. https://doi.org/10.1070/PU1968v010n04ABEH003699
- Vitelli, V. (2012), "Topological soft matter: Kagome lattices with a twist", Proc. Nat. Acad. Sci., 109(31), 12266-12267. https://doi.org/10.1073/pnas.1209950109.
- Vogiatzis, P., Chen, S., Wang, X., Li, T. and Wang, L. (2017), "Topology optimization of multi-material negative Poisson's ratio metamaterials using a reconciled level set method", Comput. Aid. Des., 83, 15-32. https://doi.org/10.1016/j.cad.2016.09.009.
- Waitukaitis, S., Menaut, R., Chen, B.G.G. and Van Hecke, M. (2015), "Origami multistability: From single vertices to metasheets", Phys. Rev. Lett., 114(5), 2-6. https://doi.org/10.1103/PhysRevLett.114.055503.
- Wang, K., Zhou, J., Ouyang, H., Cheng, L. and Xu, D. (2020), "A semi-active metamaterial beam with electromagnetic quasi-zero-stiffness resonators for ultralow-frequency band gap tuning", Int. J. Mech. Sci., 176, 105548. https://doi.org/10.1016/j.ijmecsci.2020.105548.
- Wei, Z.Y., Guo, Z.V., Dudte, L., Liang, H.Y. and Mahadevan, L. (2013), "Geometric mechanics of periodic pleated origami", Phys. Rev. Lett., 110(21), 1-5. https://doi.org/10.1103/PhysRevLett.110.215501.
- Wicks, N. and Hutchinson, J.W. (2004), "Sandwich plates actuated by a Kagome planar truss", J. Appl. Mech., Trans., 71(5), 652-662. https://doi.org/10.1115/1.1778720.
- Wills, A.S., Ballou, R. and Lacroix, C. (2002), "Model of localized highly frustrated ferromagnetism: The kagome spin ice", Phys. Review B-Condens. Mat. Mater. Phys., 66(14), 1-6. https://doi.org/10.1103/PhysRevB.66.144407.
- Witarto, W., Wang, S.J., Yang, C.Y., Nie, X., Mo, Y.L., Chang, K.C., Tang, Y. and Kassawara, R. (2018), "Seismic isolation of small modular reactors using metamaterials", AIP Adv., 8(4), 045307. https://doi.org/10.1063/1.5020161.
- Wojciechowski, K.W. (1989), "Two-dimensional isotropic system with a negative poisson ratio", Phys. Lett. A, 137(1-2), 60-64. https://doi.org/10.1016/0375-9601(89)90971-7.
- Xiang, X.M., Lu, G. and You, Z. (2020), "Energy absorption of origami inspired structures and materials", Thin Wall. Struct., 157, 107130. https://doi.org/10.1016/j.tws.2020.107130.
- Xie, Y.M., Yang, X., Shen, J., Yan, X., Ghaedizadeh, A., Rong, J., Huang, X. and Zhou, S. (2014), "Designing orthotropic materials for negative or zero compressibility", Int. J. Solid. Struct., 51(23-24), 4038-4051. https://doi.org/10.1016/j.ijsolstr.2014.07.024.
- Yang, N., Deng, Y., Mao, Z.F., Chen, Y.T., Wu, N. and Niu, X.D. (2019), "New network architectures with tunable mechanical properties inspired by origami", Mater. Today Adv., 4, 100028. https://doi.org/10.1016/j.mtadv.2019.100028.
- Yasuda, H., Miyazawa, Y., Charalampidis, E.G., Chong, C., Kevrekidis, P.G. and Yang, J. (2019), "Origami-based impact mitigation via rarefaction solitary wave creation", Sci. Adv., 5(5), eaau2835. https://doi.org/10.1126/sciadv.aau2835.
- Yasuda, H. and Yang, J. (2015), "Reentrant origami-based metamaterials with negative Poisson's ratio and bistability", Phys. Rev. Lett., 114(18), 1-5. https://doi.org/10.1103/PhysRevLett.114.185502.
- Yu, X., Zhou, J., Liang, H., Jiang, Z. and Wu, L. (2018), "Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review", Prog. Mater. Sci., 94, 114-173. https://doi.org/10.1016/j.pmatsci.2017.12.003.
- Yuan, L., Shi, H., Ma, J. and You, Z. (2019), "Quasi-static impact of origami crash boxes with various profiles", Thin Wall. Struct., 141, 435-446. https://doi.org/10.1016/j.tws.2019.04.028.
- Zeng, Y., Xu, Y., Yang, H., Muzamil, M., Xu, R., Deng, K., Peng, P. and Du, Q. (2020), "A Matryoshka-like seismic metamaterial with wide band-gap characteristics", Int. J. Solid. Struct., 185, 334-341. https://doi.org/10.1016/j.ijsolstr.2019.08.032.
- Zhang, G. and Khandelwal, K. (2019), "Computational design of finite strain auxetic metamaterials via topology optimization and nonlinear homogenization", Comput. Meth. Appl. Mech. Eng., 356, 490-527. https://doi.org/10.1016/j.cma.2019.07.027.
- Zheng, X., Lee, H., Weisgraber, T.H., Shusteff, M., DeOtte, J., Duoss, E.B., Kuntz, J.D., Biener, M.M., Ge, Q., Jackson, J.A., Kucheyev, S.O., Fang, N.X. and Spadaccini, C.M. (2014), "Ultralight, ultrastiff mechanical metamaterials", Sci., 344(6190), 1373-1377. https://doi.org/10.1126/science.1252291.
- Zhou, C., Wang, B., Ma, J. and You, Z. (2016), "Dynamic axial crushing of origami crash boxes", Int. J. Mech. Sci., 118, 1-12. https://doi.org/10.1016/j.ijmecsci.2016.09.001.
- Zhu, R., Yasuda, H., Huang, G.L. and Yang, J.K. (2018), "Kirigami-based elastic metamaterials with anisotropic mass density for subwavelength flexural wave control", Scientif. Report., 8(1), 1-11. https://doi.org/10.1038/s41598-017-18864-z.