DOI QR코드

DOI QR Code

Passive seismic protection systems with mechanical metamaterials: A current review

  • Guevara-Corzo, Jeffrey J. (School of Mechanical Engineering, Universidad Industrial de Santander) ;
  • Begambre-Carrillo, Oscar J. (School of Civil Engineering, Universidad Industrial de Santander) ;
  • Garcia-Sanchez, Jesus A. (Institute of Mechanical Engineering, Universidade Federal de Itajuba) ;
  • Sanchez-Acevedo, Heller G. (School of Mechanical Engineering, Universidad Industrial de Santander)
  • Received : 2021.03.13
  • Accepted : 2021.11.16
  • Published : 2022.05.25

Abstract

In this work, a review of mechanical metamaterials and seismic protection systems that use them is carried out, focusing on passive protection systems. During the last years, a wide variety of classical systems of seismic protection have demonstrated to be an effective and practical way of reducing the seismic vulnerability of buildings, maintaining their health and structural integrity. However, with the emergence of metamaterials, which allow obtaining uncommon mechanical properties, new procedures and devices with high performance have been developed, reducing the seismic risk through novel approaches such as: seismic shields and the redirection of seismic waves; the use of stop band gaps and the construction of buried mass resonators; the design of pentamodal base isolators. These ideas are impacting traditional areas of structural engineering such as the design and building of highly efficient base isolation systems. In this work, recent advances in new seismic protection technologies and researches that integrate mechanical metamaterials are presented. A complete bibliometric analysis was carried out to identify and classify relevant authors and works related with passive seismic protection system based on mechanical metamaterial (pSPSmMMs). Finally, possible future scenarios for study and development of seismic isolators based on mechanical metamaterials are shown, identifying the relevant topics that have not yet been explored, as well as those with the greatest potential for future application.

Keywords

Acknowledgement

The authors would like to acknowledge the funding provided by the Universidad Industrial de Santander-UIS, Colombia.

References

  1. Achaoui, Y., Antonakakis, T., Brule, S., Craster, R.V., Enoch, S. and Guenneau, S. (2017), "Clamped seismic metamaterials: Ultra-low frequency stop bands", New J. Phys., 19(6), 1-13.
  2. Achaoui, Y., Ungureanu, B., Enoch, S., Brule, S. and Guenneau, S. (2016), "Seismic waves damping with arrays of inertial resonators", Extr. Mech. Lett., 8, 30-37. https://doi.org/10.1016/j.eml.2016.02.004.
  3. Ai, L. and Gao, X.L. (2019), "Topology optimization of 2-D mechanical metamaterials using a parametric level set method combined with a meshfree algorithm", Compos. Struct., 229, 111318. https://doi.org/10.1016/j.compstruct.2019.111318.
  4. Al-Mulla, T. and Buehler, M.J. (2015), "Origami: Folding creases through bending", Nature Mater., 14(4), 366-368. https://doi.org/10.1038/nmat4258.
  5. Alderson, A., Alderson, K.L., Attard, D., Evans, K.E., Gatt, R., Grima, J.N., Miller, W., Ravirala, N., Smith, C.W. and Zied, K. (2010), "Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading", Compos. Sci. Technol., 70(7), 1042-1048. https://doi.org/10.1016/j.compscitech.2009.07.009.
  6. Babilio, E., Fabbrocino, F., Durand, M. and Fraternali, F. (2017), "On the mechanics of tetrakis-like lattices in the stretch-dominated regime", Extr. Mech. Lett., 15, 57-62. https://doi.org/10.1016/j.eml.2017.06.003.
  7. Bacigalupo, A. and Gambarotta, L. (2016), "Simplified modelling of chiral lattice materials with local resonators", Int. J. Solid. Struct., 83, 126-141. https://doi.org/10.1016/j.ijsolstr.2016.01.005.
  8. Baughman, R.H., Stafstrom, S., Cui, C. and Dantas, S.O. (1998), "Materials with negative compressibilities in one or more dimensions", Sci., 279(5356), 1522-1524. https://doi.org/10.1126/science.279.5356.1522.
  9. Bekdas, G. and Nigdeli, S.M. (2011), "Estimating optimum parameters of tuned mass dampers using harmony search", Eng. Struct., 33(9), 2716-2723. https://doi.org/10.1016/j.engstruct.2011.05.024.
  10. Bendsoe, M.P. and Kikuchi, N. (1988), "Generating optimal topologies in structural design using a homogenization method", Comput. Meth. Appl. Mech. Eng., 71, 197-224. https://doi.org/10.1016/0045-7825(88)90086-2.
  11. Bertoldi, K., Vitelli, V., Christensen, J. and van Hecke, M. (2017), "Flexible mechanical metamaterials", Nature Rev. Mater., 2(11), 1-11. https://doi.org/10.1038/natrevmats.2017.66.
  12. Boatti, E., Vasios, N. and Bertoldi, K. (2017), "Origami metamaterials for tunable thermal expansion", Adv. Mater., 29(26), 1-6. https://doi.org/10.1002/adma.201700360.
  13. Bose, J. C. (1898), "On the rotation of plane of polarisation of electric wave by a twisted structure", Proc. Roy. Soc. London, 63, 146-152. https://doi.org/10.1098/rspl.1898.0019.
  14. Braz-Cesar, M. and Carneiro De Barros, R. (2013), "Passive control of civil engineering structures", 4th International Conference on Integrity, Reliability and Failure of Mechanical Systems, 1-12.
  15. Brule, S., Enoch, S. and Guenneau, S. (2017a), "Sols structures sous sollicitation dynamique : des metamateriaux en geotechnique", Revue Francaise de Geotechnique, 151, 4. https://doi.org/10.1051/geotech/2017010.
  16. Brule, S., Enoch, S. and Guenneau, S. (2020), "Emergence of seismic metamaterials: Current state and future perspectives", Phys. Lett. A, 384(1), 126034. https://doi.org/10.1016/j.physleta.2019.126034.
  17. Brule, S., Enoch, S., Guenneau, S. and Craster, R.V. (2017b), "Seismic metamaterials: Controlling surface rayleigh waves using analogies with electromagnetic metamaterials", World Scientific Handbook of Metamaterials and Plasmonics: Volume 2: Elastic, Acoustic, and Seismic Metamaterials, 301-337.
  18. Brule, S., Javelaud, E.H., Enoch, S. and Guenneau, S. (2017c), "Flat lens effect on seismic waves propagation in the subsoil", Scientif. Report., 7(1), 1-9. https://doi.org/10.1038/s41598-017-17661-y.
  19. Brule, S., Ungureanu, B., Achaoui, Y., Diatta, A., Aznavourian, R., Antonakakis, T., Craster, R., Enoch, S. and Guenneau, S. (2017d), "Metamaterial-like transformed urbanism", Innov. Infrastr. Solut., 2(1), 1-11. https://doi.org/10.1007/s41062-017-0063-x.
  20. Buckmann, T., Kadic, M., Schittny, R. and Wegener, M. (2015), "Mechanical metamaterials with anisotropic and negative effective mass-density tensor made from one constituent material", Physica Status Solidi (B) Bas. Res., 252(7), 1671-1674. https://doi.org/10.1002/pssb.201451698.
  21. Buckmann, T., Schittny, R., Thiel, M., Kadic, M., Milton, G.W. and Wegener, M. (2014a), "On three-dimensional dilational elastic metamaterials", New J. Phys., 16(3), 033032. https://doi.org/10.1088/1367-2630/16/3/033032
  22. Buckmann, T., Thiel, M., Kadic, M., Schittny, R. and Wegener, M. (2014b), "An elasto-mechanical unfeelability cloak made of pentamode metamaterials", Nature Commun., 5, 1-6. https://doi.org/10.1038/ncomms5130.
  23. Cai, W., Gladysiak, A., Aniola, M., Smith, V.J., Barbour, L.J. and Katrusiak, A. (2015), "Giant negative area compressibility tunable in a soft porous framework material", J. Am. Chem. Soc., 137(29), 9296-9301. https://doi.org/10.1021/jacs.5b03280.
  24. Calabrese, A., Losanno, D., Spizzuoco, M., Strano, S. and Terzo, M. (2019), "Recycled Rubber Fiber Reinforced Bearings (RR-FRBs)as base isolators for residential buildings in developing countries: The demonstration building of Pasir Badak, Indonesia", Eng. Struct., 192, 126-144. https://doi.org/10.1016/j.engstruct.2019.04.076.
  25. Calvi, P.M. and Calvi, G.M. (2018), "Historical development of friction-based seismic isolation systems", Soil Dyn. Earthq. Eng., 106, 14-30. https://doi.org/10.1016/j.soildyn.2017.12.003.
  26. Casablanca, O., Ventura, G., Garesci, F., Azzerboni, B., Chiaia, B., Chiappini, M. and Finocchio, G. (2018), "Seismic isolation of buildings using composite foundations based on metamaterials", J. Appl. Phys., 123(17), 174903. https://doi.org/10.1063/1.5018005.
  27. Chen, B.J., Tsai, C., Chung, L. and Chiang, T.C. (2006), "Seismic behavior of structures isolated with a hybrid system of rubber bearings", Struct. Eng. Mech., 22(6), 761-783. https://doi.org/10.12989/sem.2006.22.6.761.
  28. Chen, B.G.G., Upadhyaya, N. and Vitelli, V. (2014), "Nonlinear conduction via solitons in a topological mechanical insulator", Proc. Nat. Acad. Sci., 111(36), 13004-13009. https://doi.org/10.1073/pnas.1405969111.
  29. Chen, W. and Huang, X. (2019), "Topological design of 3D chiral metamaterials based on couple-stress homogenization", J. Mech. Phys. Solid., 131, 372-386. https://doi.org/10.1016/j.jmps.2019.07.014.
  30. Chen, Y.J., Scarpa, F., Liu, Y.J. and Leng, J.S. (2013), "Elasticity of anti-tetrachiral anisotropic lattices", Int. J. Solid. Struct., 50(6), 996-1004. https://doi.org/10.1016/j.ijsolstr.2012.12.004.
  31. Chen, Z., Wu, T., Nian, G., Shan, Y., Liang, X., Jiang, H. and Qu, S. (2019), "Ron resch origami pattern inspired energy absorption structures", J. Appl. Mech., Trans., 86(1), 011005. https://doi.org/10.1115/1.4041415.
  32. Cheung, K.C., Tachi, T., Calisch, S. and Miura, K. (2014), "Origami interleaved tube cellular materials", Smart Mater. Struct., 23(9), 094012. https://doi.org/10.1088/0964-1726/23/9/094012
  33. Choi, H. and Kim, J. (2010), "New installation scheme for viscoelastic dampers using cables", Can. J. Civil Eng., 37(9), 1201-1211. https://doi.org/10.1139/L10-068.
  34. Colombi, A., Colquitt, D., Roux, P., Guenneau, S. and Craster, R.V. (2016a), "A seismic metamaterial: The resonant metawedge", Scientif. Report., 6(1), 1-6. https://doi.org/10.1038/srep27717 (2016).
  35. Colombi, A., Roux, P., Guenneau, S., Gueguen, P. and Craster, R.V. (2016b), "Forests as a natural seismic metamaterial: Rayleigh wave bandgaps induced by local resonances", Scientif. Report., 6(1), 1-7. https://doi.org/10.1038/srep19238.
  36. Cummer, S.A., Christensen, J. and Alu, A. (2016), "Controlling sound with acoustic metamaterials", Nature Rev. Mater., 1(3), 1-13. https://doi.org/10.1038/natrevmats.2016.1.
  37. D'Alessandro, L., Zega, V., Ardito, R. and Corigliano, A. (2018), "3D auxetic single material periodic structure with ultra-wide tunable bandgap", Scientif. Report., 8(1), 1-9. https://doi.org/10.1038/s41598-018-19963-1.
  38. Datta, T.K. (2003), "A state-of-the-art review on active control of structures", ISET J. Earthq. Technol., 40(1), 1-17.
  39. Dong, H.W., Zhao, S.D., Wei, P., Cheng, L., Wang, Y.S. and Zhang, C. (2019), "Systematic design and realization of double-negative acoustic metamaterials by topology optimization", Acta Materialia, 172, 102-120. https://doi.org/10.1016/j.actamat.2019.04.042.
  40. Elsevier (2020), SCOPUS, https://www.scopus.com/home.uri.
  41. Fabbrocino, F. and Amendola, A. (2017), "Discrete-to-continuum approaches to the mechanics of pentamode bearings", Compos. Struct., 167, 219-226. https://doi.org/10.1016/j.compstruct.2017.01.073.
  42. Fabbrocino, F., Amendola, A., Benzoni, G. and Fraternali, F. (2015), "Seismic application of pentamode lattices", Ing. Sismica, 33(1-2), 62-70.
  43. Fabbrocino, F. and Carpentieri, G. (2017), "Three-dimensional modeling of the wave dynamics of tensegrity lattices", Compos. Struct., 173, 9-16. https://doi.org/10.1016/j.compstruct.2017.03.102.
  44. Filipov, E.T., Tachi, T., Paulino, G.H. and Weitz, D. A. (2015), "Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials", Proc. Nat. Acad. Sci., 112(40), 12321-12326. https://doi.org/10.1073/pnas.1509465112.
  45. Finocchio, G., Casablanca, O., Ricciardi, G., Alibrandi, U., Garesci, F., Chiappini, M. and Azzerboni, B. (2014), "Seismic metamaterials based on isochronous mechanical oscillators", Appl. Phys. Lett., 104(19), 191903. https://doi.org/10.1063/1.4876961.
  46. Fleck, N.A., Deshpande, V.S. and Ashby, M.F. (2010a), "Micro-architectured materials: Past, present and future", Proc. Roy. Soc. A: Math., Phys. Eng. Sci., 466(2121), 2495-2516. https://doi.org/10.1098/rspa.2010.0215.
  47. Florijn, B., Coulais, C. and van Hecke, M. (2014), "Programmable Mechanical Metamaterials", Phys. Rev. Lett., 113(17), 175503. https://doi.org/10.1103/PhysRevLett.113.175503.
  48. Fraternali, F. (2016), "Seismic isolator device", Italy.
  49. Fraternali, F., Amendola, A. and Benzoni, G. (2018), "Innovative seismic isolation devices based on lattice materials: A review", Ingegneria Sismica, 35(4), 93-113.
  50. Fraternali, F., Carpentieri, G., Montuori, R., Amendola, A. and Benzoni, G. (2015), "On the use of mechanical metamaterials for innovative seismic isolations systems", COMPDYN 2015 - 5th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, 349-358, May.
  51. Frenzel, T., Kadic, M. and Wegener, M. (2017), "Three-dimensional mechanical metamaterials with a twist", Sci., 358(6366), 1072-1074. https://doi.org/10.1126/science.aao4640.
  52. Forrai, A., Hashimoto, S., Funato, H. and Kamiyama. K. (2001), "Structural control of flexible structures", Comput. Control Eng. J., IET, 12(6), 257-262. https://doi.org/10.1049/cce:20010602
  53. Gao, J., Xue, H., Gao, L. and Luo, Z. (2019), "Topology optimization for auxetic metamaterials based on isogeometric analysis", Comput. Meth. Appl. Mech. Eng., 352, 211-236. https://doi.org/10.1016/j.cma.2019.04.021.
  54. Gatt, R., Attard, D., Farrugia, P.S., Azzopardi, K.M., Mizzi, L., Brincat, J.P. and Grima, J.N. (2013), "A realistic generic model for anti-tetrachiral systems", Physica Status Solidi (B) Bas. Res., 250(10), 2012-2019. https://doi.org/10.1002/pssb.201384246.
  55. Gibson, L.J. and Ashby, M.F. (1997), Cellular Solids Structure and Properties, Cambridge University Press, Cambridge.
  56. Goodwin, A.L., Keen, D.A. and Tucker, M.G. (2008), "Large negative linear compressibility of Ag3[Co(CN)6]", Proc. Nat. Acad. Sci., 105(48), 18708-18713. https://doi.org/10.1073/pnas.0804789105.
  57. Grima, J.N., Gatt, R. and Farrugia, P.S. (2008), "On the properties of auxetic meta-tetrachiral structures", Physica Status Solidi (B) Bas. Res., 245(3), 511-520. https://doi.org/10.1002/pssb.200777704.
  58. Gurtner, G. and Durand, M. (2014), "Stiffest elastic networks", Proc. Roy. Soc. A: Math., Phys. Eng. Sci., 470(2164), 20130611. https://doi.org/10.1098/rspa.2013.0611.
  59. Hanna, B.H., Lund, J.M., Lang, R.J., Magleby, S.P. and Howell, L.L. (2014), "Waterbomb base: A symmetric single-vertex bistable origami mechanism", Smart Mater. Struct., 23(9), 094009. https://doi.org/10.1088/0964-1726/23/9/094009
  60. Huang, J., Liu, W. and Shi, Z. (2017), "Surface-wave attenuation zone of layered periodic structures and feasible application in ground vibration reduction", Constr. Build. Mater., 141, 1-11. https://doi.org/10.1016/j.conbuildmat.2017.02.153.
  61. Hyun, S. and Torquato, S. (2002), "Optimal and manufacturable two-dimensional, Kagome-like cellular solids", J. Mater. Res., 17(1), 137-144. https://doi.org/10.1557/JMR.2002.0021.
  62. Ishida, S., Suzuki, K. and Shimosaka, H. (2017), "Design and experimental analysis of origami-inspired vibration isolator with Quasi-Zero-Stiffness characteristic", J. Vib. Acoust., Trans., 139(5), 1-5. https://doi.org/10.1115/1.4036465.
  63. Jabary, R.N. and Madabhushi, S.P.G. (2015), "Tuned mass damper effects on the response of multi-storied structures observed in geotechnical centrifuge tests", Soil Dyn. Earthq. Eng., 77, 373-380. https://doi.org/10.1016/j.soildyn.2015.06.013.
  64. Jangid, R. (1995), "Dynamic characteristics of structures with multiple tuned mass dampers", Struct. Eng. Mech., 3(5), 497-509. https://doi.org/10.12989/sem.1995.3.5.497.
  65. Jiang, Y. and Li, Y. (2018), "3D printed auxetic mechanical metamaterial with chiral cells and re-entrant cores", Scientif. Report., 8(1), 1-11. https://doi.org/10.1038/s41598-018-20795-2.
  66. Jung, H.J., Spencer Jr, B., Ni, Y. and Lee, I. (2004), "State-of-the-art of semiactive control systems using MR fluid dampers in civil engineering applications", Struct. Eng. Mech., 17(3-4), 493-526. https://doi.org/10.12989/sem.2004.17.3_4.493.
  67. Kadic, M., Buckmann, T., Schittny, R. and Wegener, M. (2013), "On anisotropic versions of three-dimensional pentamode metamaterials", New J. Phys., 15(2), 023029. https://doi.org/10.1088/1367-2630/15/2/023029
  68. Kadic, M., Buckmann, T., Stenger, N., Thiel, M. and Wegener, M. (2012), "On the practicability of pentamode mechanical metamaterials", Appl. Phys. Lett., 100(19), 191901. https://doi.org/10.1063/1.4709436.
  69. Kadic, M., Milton, G.W., van Hecke, M. and Wegener, M. (2019), "3D metamaterials", Nature Rev. Phys., 1(3), 198-210. https://doi.org/10.1038/s42254-018-0018-y.
  70. Kane, C.L. and Lubensky, T.C. (2013), "Topological boundary modes in isostatic lattices", Nat. Phys., 10(1), 39-45. https://doi.org/10.1038/nphys2835.
  71. Karpov, E.G. (2017), "Structural metamaterials with Saint-Venant edge effect reversal", Acta Materialia, 123, 245-254. https://doi.org/10.1016/j.actamat.2016.10.046.
  72. Kitamura, H., Kitamura, Y., Ito, M. and Sakamoto, M. (2004), "Analysis of the present situation of response control systems in Japan based on building survey database", J. JPN Assoc. Earthq. Eng., 4(3), 265-277. https://doi.org/10.5610/jaee.4.3_265.
  73. Lakes, R. (1993), "Advances in negative poisson's ratio materials", Adv. Mater., 5(4), 293-296. https://doi.org/10.1002/adma.19930050416.
  74. Lakes, R.S. (1993), "Materials with structural hierarchy", Nature, 361, 511-515. https://doi.org/10.1038/361511a0.
  75. Lakes, R. and Wojciechowski, K.W. (2008), "Negative compressibility, negative Poisson's ratio, and stability", Physica Status Solidi (B) Bas. Res., 245(3), 545-551. https://doi.org/10.1002/pssb.200777708.
  76. Le, D.H., Xu, Y., Tentzeris, M.M. and Lim, S. (2020), "Transformation from 2D meta-pixel to 3D meta-pixel using auxetic kirigami for programmable multifunctional electromagnetic response", Extr. Mech. Lett., 36, 100670. https://doi.org/10.1016/j.eml.2020.100670.
  77. Li, S. and Wang, K.W. (2015), "Fluidic origami: A plant-inspired adaptive structure with shape morphing and stiffness tuning", Smart Mater. Struct., 24(10), 105031. https://doi.org/10.1088/0964-1726/24/10/105031
  78. Li, X. and Gao, H. (2016), "Mechanical metamaterials: Smaller and stronger", Nature Mater., 15(4), 373-374. https://doi.org/10.1038/nmat4591.
  79. Liu, S., Lv, W., Chen, Y. and Lu, G. (2016), "Deployable prismatic structures with rigid origami patterns", J. Mech. Robot., 8(3), 031002. https://doi.org/10.1115/1.4031953.
  80. Lorato, A., Innocenti, P., Scarpa, F., Alderson, A., Alderson, K.L., Zied, K.M., Ravirala, N., Miller, W., Smith, C.W. and Evans, K.E. (2010), "The transverse elastic properties of chiral honeycombs", Compos. Sci. Technol., 70(7), 1057-1063. https://doi.org/10.1016/j.compscitech.2009.07.008.
  81. De Luca, A. and Guidi, L.G. (2019), "State of art in the worldwide evolution of base isolation design", Soil Dyn. Earthq. Eng., 125(2019), 105722. https://doi.org/10.1016/j.soildyn.2019.105722.
  82. Lv, C., Krishnaraju, D., Konjevod, G., Yu, H. and Jiang, H. (2014), "Origami based mechanical metamaterials", Scientif. Report., 4, 5979. https://doi.org/10.1038/srep05979.
  83. Maldovan, M. (2013), "Sound and heat revolutions in phononics", Nature, 503(7475), 209-217. https://doi.org/10.1038/nature12608.
  84. Mao, X. and Lubensky, T.C. (2011), "Coherent potential approximation of random nearly isostatic kagome lattice", Phys. Rev. E-Stat., Nonlin. Soft Mat. Phys., 83(1), 1-14. https://doi.org/10.1103/PhysRevE.83.011111.
  85. Mao, X., Souslov, A., Mendoza, C.I. and Lubensky, T.C. (2015), "Mechanical instability at finite temperature", Nature Commun., 6, 1-8. https://doi.org/10.1038/ncomms6968 (2015)..
  86. Martin, A., Kadic, M., Schittny, R., Buckmann, T. and Wegener, M. (2012), "Phonon band structures of three-dimensional pentamode metamaterials", Phys. Rev. B-Condens. Mat. Mater. Phys., 86(15), 2-6. https://doi.org/10.1103/PhysRevB.86.155116.
  87. Mazza, F. (2017), "Residual seismic load capacity of fire-damaged rubber bearings of R.C. base-isolated buildings", Eng. Fail. Anal., 79, 951-970. https://doi.org/10.1016/j.engfailanal.2017.06.011.
  88. Miller, W., Smith, C.W., Scarpa, F. and Evans, K.E. (2010), "Flatwise buckling optimization of hexachiral and tetrachiral honeycombs", Compos. Sci. Technol., 70(7), 1049-1056. https://doi.org/10.1016/j.compscitech.2009.10.022.
  89. Milton, G.W. (1992), "Composite materials with poisson's ratios close to - 1", J. Mech. Phys. Solid., 40(5), 1105-1137. https://doi.org/10.1016/0022-5096(92)90063-8.
  90. Milton, G.W. (2016), "Analytic materials", Proc. Roy. Soc. A: Math. Phys. Eng. Sci., 472(2195), 20160613. https://doi.org/10.1098/rspa.2016.0613.
  91. Milton, G.W., Briane, M. and Willis, J.R. (2006), "On cloaking for elasticity and physical equations with a transformation invariant form", New J. Phys., 8(10), 248. https://doi.org/10.1088/1367-2630/8/10/248
  92. Milton, G.W. and Cherkaev, A.V. (1995), "Which elasticity tensors are realizable?", J. Eng. Mater. Technol., Trans., 117(4), 483-493. https://doi.org/10.1115/1.2804743.
  93. Mitchell, S.J., Pandolfi, A. and Ortiz, M. (2014), "Metaconcrete: Designed aggregates to enhance dynamic performance", J. Mech. Phys. Solid., 65(1), 69-81. https://doi.org/10.1016/j.jmps.2014.01.003.
  94. Miura, K. (1975), "New structural form of sandwich core", J. Aircraft, 12(5), 437-441. https://doi.org/10.2514/3.44468.
  95. Mousanezhad, D., Haghpanah, B., Ghosh, R., Hamouda, A.M., Nayeb-Hashemi, H. and Vaziri, A. (2016), "Elastic properties of chiral, anti-chiral, and hierarchical honeycombs: A simple energy-based approach", Theor. Appl. Mech. Lett., 6(2), 81-96. https://doi.org/10.1016/j.taml.2016.02.004.
  96. Mu, D., Shu, H., Zhao, L. and An, S. (2020), "A review of research on seismic metamaterials", Adv. Eng. Mater., 22(4), 1-23. https://doi.org/10.1002/adem.201901148.
  97. Muhlestein, M.B. and Haberman, M.R. (2016), "A micromechanical approach for homogenization of elastic metamaterials with dynamic microstructure", Proc. Roy. Soc. A: Math. Phys. Eng. Sci., 472(2192), 20160438. https://doi.org/10.1098/rspa.2016.0438.
  98. Munn, R.W. (1972), "Role of the elastic constants in negative thermal expansion of axial solids", J. Phys. C: Solid State Phys., 5(5), 535-542. https://doi.org/10.1088/0022-3719/5/5/005
  99. Neville, R.M., Scarpa, F. and Pirrera, A. (2016), "Shape morphing Kirigami mechanical metamaterials", Scientif. Report., 6, 1-12. https://doi.org/10.1038/srep31067.
  100. Ng, C. and Xu, Y. (2006), "Seismic response control of a building complex utilizing passive friction damper: Analytical study", Struct. Eng. Mech., 22(1), 85-105. https://doi.org/10.12989/sem.2006.22.1.085.
  101. Nicolaou, Z.G. and Motter, A.E. (2012), "Mechanical metamaterials with negative compressibility transitions", Nature Materi., 11(7), 608-613. https://doi.org/10.1038/nmat3331.
  102. Norris, A.N. (2014), "Mechanics of elastic networks", Proc. Roy. Soc. A: Math. Phys. Eng. Sci., 470(2172), 20140522. https://doi.org/10.1098/rspa.2014.0522.
  103. Oviedo, J.A. and Duque, M. del P. (2009), "Disipadores histereticos metalicos como sistemas de control de respuesta sismica en edificaciones", Revista EIA, (6), 105-120.
  104. Palermo, A. and Marzani, A. (2018), "Control of Love waves by resonant metasurfaces", Scientif. Report., 8(1), 1-8. https://doi.org/10.1038/s41598-018-25503-8.
  105. Paulose, J., Chen, B.G.G. and Vitelli, V. (2015), "Topological modes bound to dislocations in mechanical metamaterials", Nature Phys., 11(2), 153-156. https://doi.org/10.1038/nphys3185.
  106. Pendry, J.B. (2000), "Negative refraction makes a perfect lens", Phys. Rev. Lett., 85(18), 3966-3969. https://doi.org/10.1103/PhysRevLett.85.3966.
  107. Pong, W. and Tsai, C. (1995), "Seismic study of buildings with viscoelastic dampers", Struct. Eng. Mech., 3(6), 596-581. https://doi.org/10.12989/sem.1995.3.6.596.
  108. Pozniak, A.A. and Wojciechowski, K.W. (2014), "Poisson's ratio of rectangular anti-chiral structures with size dispersion of circular nodes", Physica Status Solidi (B) Bas. Res., 251(2), 367-374. https://doi.org/10.1002/pssb.201384256.
  109. Prall, D. and Lakes, R.S. (1997), "Properties of chiral honeycomb with Poisson's ratio of -1", Int. J. Mech. Sci., 39(3), 305-314. https://doi.org/10.1016/S0020-7403(96)00025-2.
  110. Queheillalt, D.T. and Wadley, H.N.G. (2005), "Cellular metal lattices with hollow trusses", Acta Materialia, 53(2), 303-313. https://doi.org/10.1016/j.actamat.2004.09.024.
  111. Ren, X., Shen, J., Tran, P., Ngo, T.D. and Xie, Y.M. (2018), "Auxetic nail: Design and experimental study", Compos. Struct., 184, 288-298. https://doi.org/10.1016/j.compstruct.2017.10.013.
  112. Resch, R. (1968), "Experimental Structures", Architect-Researcher Conference, Proceedings of the American Institute of Architects.
  113. Resch, R. (1970), "The design and analysis of kinematic folded plate systems", Proceedings of IASS Symposium on Folded Plates and Prismatic Structures.
  114. Resch, R. and Christiansen, H. (1970), "Kinematic folded plate system", IASS Symposium.
  115. Sadeghi, S. and Li, S. (2019), "Fluidic origami cellular structure with asymmetric Quasi-Zero stiffness for low-frequency vibration isolation", Smart Mater. Struct., 28, 11-14.
  116. Schenk, M. and Guest, S.D. (2013), "Geometry of Miura-folded metamaterials", Proc. Nat. Acad. Sci., 110(9), 3276-3281. https://doi.org/10.1073/pnas.1217998110.
  117. Schittny, R., Buckmann, T., Kadic, M. and Wegener, M. (2013a), "Elastic measurements on macroscopic three-dimensional pentamode metamaterials", Appl. Phys. Lett., 103(23), 231905. https://doi.org/10.1063/1.4838663
  118. Schittny, R., Kadic, M., Guenneau, S. and Wegener, M. (2013b), "Experiments on transformation thermodynamics: molding the flow of heat", Phys. Rev. Lett., 110(19), 195901. https://doi.org/10.1103/PhysRevLett.110.195901.
  119. Shan, S., Kang, S.H., Wang, P., Qu, C., Shian, S., Chen, E.R. and Bertoldi, K. (2014), "Harnessing multiple folding mechanisms in soft periodic structures for tunable control of elastic waves", Adv. Function. Mater., 24(31), 4935-4942. https://doi.org/10.1002/adfm.201400665.
  120. Shim, J., Shan, S., Kosmrlj, A., Kang, S.H., Chen, E.R., Weaver, J.C. and Bertoldi, K. (2013), "Harnessing instabilities for design of soft reconfigurable auxetic/chiral materials", Soft Mat., 9(34), 8198. https://doi.org/10.1039/C3SM51148K.
  121. Shyu, T.C., Damasceno, P.F., Dodd, P.M., Lamoureux, A., Xu, L., Shlian, M., Shtein, M., Glotzer, S.C. and Kotov, N.A. (2015), "A kirigami approach to engineering elasticity in nanocomposites through patterned defects", Nature Mater., 14(8), 785-789. https://doi.org/10.1038/nmat4327.
  122. Sigmund, O. (1995), "Tailoring materials with prescribed elastic properties", Mech. Mater., 20(4), 351-368. https://doi.org/10.1016/0167-6636(94)00069-7.
  123. Silverberg, J.L., Evans, A.A., McLeod, L., Hayward, R.C., Hull, T., Santangelo, C.D. and Cohen, I. (2014), "Using origami design principles to fold reprogrammable mechanical metamaterials", Sci., 345(6197), 647-650. https://doi.org/10.1126/science.1252876.
  124. Silverberg, J.L., Na, J.H., Evans, A.A., Liu, B., Hull, T.C., Santangelo, C.D., Lang, R.J., Hayward, R.C. and Cohen, I. (2015), "Origami structures with a critical transition to bistability arising from hidden degrees of freedom", Nature Mater., 14(4), 389-393. https://doi.org/10.1038/nmat4232.
  125. Smith, D.R., Pendry, J.B. and Wiltshire, M.C.K. (2004), "Metamaterials and negative refractive index", Sci., 305(5685), 788-792. https://doi.org/10.1126/science.1096796.
  126. Song, J., Chen, Y. and Lu, G. (2012), "Axial crushing of thin-walled structures with origami patterns", Thin Wall. Struct., 54, 65-71. https://doi.org/10.1016/j.tws.2012.02.007.
  127. Soong, T.T. and Spencer, B.F. (2000), "Active, semi-active and hybrid control of structures", Bull. NZ Soc. Earthq. Eng., 33(3), 387-402. https://doi.org/10.5459/bnzsee.33.3.387-402.
  128. Soukoulis, C.M. and Wegener, M. (2011), "Past achievements and future challenges in the development of three-dimensional photonic metamaterials", Nature Photon., 5(9), 523-530. https://doi.org/10.1038/nphoton.2011.154.
  129. Spadoni, A. and Ruzzene, M. (2012), "Elasto-static micropolar behavior of a chiral auxetic lattice", J. Mech. Phys. Solid., 60(1), 156-171. https://doi.org/10.1016/j.jmps.2011.09.012.
  130. Spadoni, A., Ruzzene, M., Gonella, S. and Scarpa, F. (2009), "Phononic properties of hexagonal chiral lattices", Wave Motion, 46(7), 435-450. https://doi.org/10.1016/j.wavemoti.2009.04.002.
  131. Spencer, B.F. and Soong, T.T. (1999), "New applications and development of active, semi-active and hybrid control techniques for seismic and non-seismic vibrations in the USA", Proceedings of International Post-SMiRT Conference Seminar on Seismic Isolation, Passive Energy Dissipation and Active Control of Vibration of Structures, Cheju, Korea.
  132. Symans, M.D., Charney, F.A., Whittaker, A.S., Constantinou, M.C., Kircher, C.A., Johnson, M.W. and McNamara, R.J. (2008), "Energy dissipation systems for seismic applications: Current practice and recent developments", J. Struct. Eng., 134(1), 3-21. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:1(3).
  133. Tachi, T. (2013), "Designing freeform origami tessellations by generalizing resch's patterns", J. Mech. Des., Trans., 135(11), 1-10. https://doi.org/10.1115/1.4025389.
  134. Tachi, T. and Miura, K. (2012), "Rigid-foldable cylinders and cells", J. Int. Assoc. Shell Spat. Struct., 53(4), 217-226.
  135. Tang, Y., Lin, G., Yang, S., Yi, Y.K., Kamien, R.D. and Yin, J. (2017), "Programmable Kiri-Kirigami Metamaterials", Adv. Mater., 29(10), 1-9. https://doi.org/10.1002/adma.201604262.
  136. Torrents, A., Schaedler, T.A., Jacobsen, A.J., Carter, W.B. and Valdevit, L. (2012), "Characterization of nickel-based microlattice materials with structural hierarchy from the nanometer to the millimeter scale", Acta Materialia, 60(8), 3511-3523. https://doi.org/10.1016/j.actamat.2012.03.007.
  137. Ungureanu, B., Achaoui, Y., Enoch, S., Brule, S. and Guenneau, S. (2015), "Auxetic-like metamaterials as novel earthquake protections", arXiv preprint arXiv:1510.08785.
  138. van Eck, N.J. and Waltman, L. (2010), "Software survey: VOSviewer, a computer program for bibliometric mapping", Scientometr., 84(2), 523-538. https://doi.org/10.1007/s11192-009-0146-3.
  139. Veselago, V.G. (1968), "The electrodynamics of the substances with simultaneously negative values of є and μ", Soviet Phys. Uspekhi, 10(4), 509-514. https://doi.org/10.1070/PU1968v010n04ABEH003699
  140. Vitelli, V. (2012), "Topological soft matter: Kagome lattices with a twist", Proc. Nat. Acad. Sci., 109(31), 12266-12267. https://doi.org/10.1073/pnas.1209950109.
  141. Vogiatzis, P., Chen, S., Wang, X., Li, T. and Wang, L. (2017), "Topology optimization of multi-material negative Poisson's ratio metamaterials using a reconciled level set method", Comput. Aid. Des., 83, 15-32. https://doi.org/10.1016/j.cad.2016.09.009.
  142. Waitukaitis, S., Menaut, R., Chen, B.G.G. and Van Hecke, M. (2015), "Origami multistability: From single vertices to metasheets", Phys. Rev. Lett., 114(5), 2-6. https://doi.org/10.1103/PhysRevLett.114.055503.
  143. Wang, K., Zhou, J., Ouyang, H., Cheng, L. and Xu, D. (2020), "A semi-active metamaterial beam with electromagnetic quasi-zero-stiffness resonators for ultralow-frequency band gap tuning", Int. J. Mech. Sci., 176, 105548. https://doi.org/10.1016/j.ijmecsci.2020.105548.
  144. Wei, Z.Y., Guo, Z.V., Dudte, L., Liang, H.Y. and Mahadevan, L. (2013), "Geometric mechanics of periodic pleated origami", Phys. Rev. Lett., 110(21), 1-5. https://doi.org/10.1103/PhysRevLett.110.215501.
  145. Wicks, N. and Hutchinson, J.W. (2004), "Sandwich plates actuated by a Kagome planar truss", J. Appl. Mech., Trans., 71(5), 652-662. https://doi.org/10.1115/1.1778720.
  146. Wills, A.S., Ballou, R. and Lacroix, C. (2002), "Model of localized highly frustrated ferromagnetism: The kagome spin ice", Phys. Review B-Condens. Mat. Mater. Phys., 66(14), 1-6. https://doi.org/10.1103/PhysRevB.66.144407.
  147. Witarto, W., Wang, S.J., Yang, C.Y., Nie, X., Mo, Y.L., Chang, K.C., Tang, Y. and Kassawara, R. (2018), "Seismic isolation of small modular reactors using metamaterials", AIP Adv., 8(4), 045307. https://doi.org/10.1063/1.5020161.
  148. Wojciechowski, K.W. (1989), "Two-dimensional isotropic system with a negative poisson ratio", Phys. Lett. A, 137(1-2), 60-64. https://doi.org/10.1016/0375-9601(89)90971-7.
  149. Xiang, X.M., Lu, G. and You, Z. (2020), "Energy absorption of origami inspired structures and materials", Thin Wall. Struct., 157, 107130. https://doi.org/10.1016/j.tws.2020.107130.
  150. Xie, Y.M., Yang, X., Shen, J., Yan, X., Ghaedizadeh, A., Rong, J., Huang, X. and Zhou, S. (2014), "Designing orthotropic materials for negative or zero compressibility", Int. J. Solid. Struct., 51(23-24), 4038-4051. https://doi.org/10.1016/j.ijsolstr.2014.07.024.
  151. Yang, N., Deng, Y., Mao, Z.F., Chen, Y.T., Wu, N. and Niu, X.D. (2019), "New network architectures with tunable mechanical properties inspired by origami", Mater. Today Adv., 4, 100028. https://doi.org/10.1016/j.mtadv.2019.100028.
  152. Yasuda, H., Miyazawa, Y., Charalampidis, E.G., Chong, C., Kevrekidis, P.G. and Yang, J. (2019), "Origami-based impact mitigation via rarefaction solitary wave creation", Sci. Adv., 5(5), eaau2835. https://doi.org/10.1126/sciadv.aau2835.
  153. Yasuda, H. and Yang, J. (2015), "Reentrant origami-based metamaterials with negative Poisson's ratio and bistability", Phys. Rev. Lett., 114(18), 1-5. https://doi.org/10.1103/PhysRevLett.114.185502.
  154. Yu, X., Zhou, J., Liang, H., Jiang, Z. and Wu, L. (2018), "Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review", Prog. Mater. Sci., 94, 114-173. https://doi.org/10.1016/j.pmatsci.2017.12.003.
  155. Yuan, L., Shi, H., Ma, J. and You, Z. (2019), "Quasi-static impact of origami crash boxes with various profiles", Thin Wall. Struct., 141, 435-446. https://doi.org/10.1016/j.tws.2019.04.028.
  156. Zeng, Y., Xu, Y., Yang, H., Muzamil, M., Xu, R., Deng, K., Peng, P. and Du, Q. (2020), "A Matryoshka-like seismic metamaterial with wide band-gap characteristics", Int. J. Solid. Struct., 185, 334-341. https://doi.org/10.1016/j.ijsolstr.2019.08.032.
  157. Zhang, G. and Khandelwal, K. (2019), "Computational design of finite strain auxetic metamaterials via topology optimization and nonlinear homogenization", Comput. Meth. Appl. Mech. Eng., 356, 490-527. https://doi.org/10.1016/j.cma.2019.07.027.
  158. Zheng, X., Lee, H., Weisgraber, T.H., Shusteff, M., DeOtte, J., Duoss, E.B., Kuntz, J.D., Biener, M.M., Ge, Q., Jackson, J.A., Kucheyev, S.O., Fang, N.X. and Spadaccini, C.M. (2014), "Ultralight, ultrastiff mechanical metamaterials", Sci., 344(6190), 1373-1377. https://doi.org/10.1126/science.1252291.
  159. Zhou, C., Wang, B., Ma, J. and You, Z. (2016), "Dynamic axial crushing of origami crash boxes", Int. J. Mech. Sci., 118, 1-12. https://doi.org/10.1016/j.ijmecsci.2016.09.001.
  160. Zhu, R., Yasuda, H., Huang, G.L. and Yang, J.K. (2018), "Kirigami-based elastic metamaterials with anisotropic mass density for subwavelength flexural wave control", Scientif. Report., 8(1), 1-11. https://doi.org/10.1038/s41598-017-18864-z.