DOI QR코드

DOI QR Code

Numerical analysis of segmental tunnel linings - Use of the beam-spring and solid-interface methods

  • Rashiddel, Alireza (Department of Mining, Faculty of Engineering, Urmia University) ;
  • Hajihassani, Mohsen (Department of Mining, Faculty of Engineering, Urmia University) ;
  • Kharghani, Mehdi (Department of Mining, Faculty of Engineering, Islamic Azad University) ;
  • Valizadeh, Hadi (Civil Engineering Department, Ozyegin University) ;
  • Rahmannejad, Reza (Department of Mining, Faculty of Engineering, Shahid Bahonar University) ;
  • Dias, Daniel (Department of Civil Engineering, Grenoble Alps University, Laboratory 3SR, Polytech Grenoble)
  • 투고 : 2021.08.09
  • 심사 : 2022.04.16
  • 발행 : 2022.05.25

초록

The effect of segmental joints is one of main importance for the segmental lining design when tunnels are excavated by a mechanized process. In this paper, segmental tunnel linings are analyzed by two numerical methods, namely the Beam-Spring Method (BSM) and the Solid-Interface Method (SIM). For this purpose, the Tehran Subway Line 6 Tunnel is considered to be the reference case. Comprehensive 2D numerical simulations are performed considering the soil's calibrated plastic hardening model (PH). Also, an advanced 3D numerical model was used to obtain the stress relaxation value. The SIM numerical model is conducted to calculate the average rotational stiffness of the longitudinal joints considering the joints bending moment distribution and joints openings. Then, based on the BSM, a sensitivity analysis was performed to investigate the influence of the ground rigidity, depth to diameter ratios, slippage between the segment and ground, segment thickness, number of segments and pattern of joints. The findings indicate that when the longitudinal joints are flexible, the soil-segment interaction effect is significant. The joint rotational stiffness effect becomes remarkable with increasing the segment thickness, segment number, and tunnel depth. The pattern of longitudinal joints, in addition to the joint stiffness ratio and number of segments, also depends on the placement of longitudinal joints of the key segment in the tunnel crown (similar to patterns B and B').

키워드

참고문헌

  1. Andreotti, G., Calvi, G.M., Soga, K., Gong, C. and Ding, W. (2020), "Cyclic model with damage assessment of longitudinal joints in segmental tunnel linings", Tunn. Undergr. Sp. Tech., 103, 103472. https://doi.org/10.1016/j.tust.2020.103472.
  2. Arnau, O. and Molins, C. (2011), "Experimental and analytical study of the structural response of segmental tunnel linings based on an in situ loading test. Part 2: Numerical simulation", Tunn. Undergr. Sp. Tech., 26(6), 778-788. https://doi.org/10.1016/j.tust.2011.04.005.
  3. Blom, C. (2002), "Design philosophy of concrete linings for tunnel in soft soils", Ph.D. Dissertation, Delft University of Technology (TU Delft), Delft.
  4. Chaipanna, P. and Jongpradist, P. (2019), "3D response analysis of a shield tunnel segmental lining during construction and a parametric study using the ground-spring model", Tunn. Undergr. Sp. Tech., 90, 369-382. https://doi.org/10.1016/j.tust.2019.05.015.
  5. Darya Khak Pey Consulting Engineers (2009), "Geotechnical studies report the southern part of the metro Tehran line 6", Tehran Urben Railway Corporation.
  6. Ding, W.Q., Yue, Z.Q., Tham, L.G., Zhu, H.H., Lee, C.F. and Hashimoto, T. (2004), "Analysis of shield tunnel", Int. J. Numer. Anal. Method. Geomech., 28(1), 57-91. https://doi.org/10.1002/nag.327.
  7. Do, N.A., Dias, D., Oreste, P. and Djeran-Maigre, I. (2013), "2D numerical investigation of segmental tunnel lining behavior", Tunn. Undergr. Sp. Tech., 37, 115-127. https://doi.org/10.1016/j.tust.2013.03.008.
  8. Ebrahimi, S., Hadei, M.R. and Rashiddel, A. (2020), "Numerical investigation of innovative support frame of openings in the segmental tunnel lining", Open Constr. Build. Technol. J., 14, 358-369. https://doi.org/10.2174/1874836802014010358.
  9. El Naggar, H. and Hinchberger, S.D. (2008), "An analytical solution for jointed tunnel linings in elastic soil or rock", Can. Geotech. J., 45(11), 1572-1593. https://doi.org/10.1139/T08-075.
  10. German Tunneling Committee (DAUB) (2001), "Concrete Lining for Tunnel Built by Underground Construction", German Committee for Underground Construction.
  11. Gladwell, G.M. (1980), Contact Problems in the Classical Theory of Elasticity, Springer Science & Business Media.
  12. GMBH Consulting Engineers (2011), "Report on the static design of the segmental lining for MetroTehran Line 6", Tehran Urben Railway Corporation.
  13. Golpasand, M.R.B., Do, N.A., Dias, D. and Nikudel, M.R. (2018), "Effect of the lateral earth pressure coefficient on settlements during mechanized tunneling", Geomech. Eng., 16(6), 643-654. https://doi.org/10.12989/gae.2018.16.6.643.
  14. Gong, C., Ding, W. and Xie, D. (2020), "Parametric investigation on the sealant behavior of tunnel segmental joints under water pressurization", Tunn. Undergr. Sp. Tech., 97, 103231. https://doi.org/10.1016/j.tust.2019.103231.
  15. Guan, Z., Deng, T., Wang, G. and Jiang, Y. (2015), "Studies on the key parameters in segmental lining design", J. Rock Mech. Geotech. Eng., 7(6), 674-683. https://doi.org/10.1016/j.jrmge.2015.08.008.
  16. Guglielmetti, V., Grasso, P., Mahtab, A. and Xu, S. (2007), Mechanized Tunnelling in Urban Areas: Design Methodology and Construction Control, Taylor & Francis Group, London, UK.
  17. Hefny, A.M. and Chua, H.C. (2006), "An investigation into the behaviour of jointed tunnel lining", Tunn. Undergr. Sp. Tech., 21(3), 428. https://doi.org/10.1016/j.tust.2005.12.070.
  18. Hejazi, Y., Dias, D. and Kastner, R. (2008), "Impact of constitutive models on the numerical analysis of underground constructions", Acta Geotech., 3(4), 251-258. https://doi.org/10.1007/s11440-008-0056-1.
  19. Herrenknecht A.G. (2009), "S-523 Earth Pressure Balance Shield", Tehran Metro Line 3.
  20. Huang, Z.r., Zhu, W., Liang, J.h., Lin, J. and Jia, R. (2006), "Three-dimensional numerical modelling of shield tunnel lining", Tunn. Undergr. Sp. Tech., 21(3), 434. https://doi.org/10.1016/j.tust.2005.12.076.
  21. Working Group No. 2, International Tunnelling Association (ITA) (2000), "Guidelines for design of shield tunnel lining", Tunn. Undergr. Sp. Tech., 15(3), 303-331. https://doi.org/10.1016/S0886-7798(00)00058-4.
  22. Itasca Consulting Group Inc. (2019), FLAC-Fast Lagrangian Analysis of Continua (Version 8.1), Minneapolis, Minnesota, User's manual.
  23. Itasca Consulting Group Inc. (2012), FLAC3D-Fast Lagrangian Analysis of Continua (Version 5.0), Minneapolis, Minnesota, User's manual.
  24. Janssen, p. (1983), "Tragverhalten von Tunnelausbauten mit Gelenktubbings [Load carrying behavior of segmented tunnel linings]", Technische Universitat Carolo-Wilhelmina zu Braunschweig, Braunschweig (In German).
  25. JSCE (2016), Standard Specifications for Tunnelling: Shield Tunnels, Working Group for Shield Tunnels, Tokyo.
  26. Kavvadas, M., Litsas, D., Vazaios, I. and Fortsakis, P. (2017), "Development of a 3D finite element model for shield EPB tunnelling", Tunn. Undergr. Sp. Tech., 65, 22-34. https://doi.org/10.1016/j.tust.2017.02.001.
  27. Klappers, C., Grubl, F. and Ostermeier, B. (2006), "Structural analyses of segmental lining - coupled beam and spring analyses versus 3D-FEM calculations with shell elements", Tunn. Undergr. Sp. Tech., 21(3), 254-255. https://doi.org/10.1016/j.tust.2005.12.116.
  28. Kontogianni, V. and Stiros, S.C. (2020), "Ground loss and static soil-structure interaction during urban tunnel excavation: evidence from the excavation of the athens metro", Infrastructures, 5(8). https://doi:10.3390/infrastructures5080064.
  29. Koyama, Y. (2003), "Present status and technology of shield tunneling method in Japan", Tunn. Undergr. Sp. Tech., 18(2), 145-159. https://doi.org/10.1016/S0886-7798(03)00040-3.
  30. Lee, K.M., Hou, X.Y., Ge, X.W. and Tang, Y. (2001), "An analytical solution for a jointed shield-driven tunnel lining", Int. J. Numer. Anal. Methods Geomech., 25(4), 365-390. https://doi.org/10.1002/nag.134.
  31. Li, X., Yan, Z., Wang, Z. and Zhu, H. (2015), "A progressive model to simulate the full mechanical behavior of concrete segmental lining longitudinal joints", Eng. Struct., 93, 97-113. https://doi.org/10.1016/j.engstruct.2015.03.011.
  32. Liu, B., Yu, Z., Han, Y., Wang, Z., Yang, S. and Liu, H. (2020), "A simplified combined analytical method for evaluating the effect of deep surface excavations on the shield metro tunnels", Geomech. Eng., 23(5), 405-418. https://doi.org/10.12989/gae.2020.23.5.405.
  33. Liu, X., Zhang, Y., Bao, Y. and Song, W. (2022), "Investigation of the structural effect induced by stagger joints in segmental tunnel linings: Numerical explanation via macro-level structural modeling", Tunn. Undergr. Sp. Tech., 120, 104284. https://doi.org/10.1016/j.tust.2021.104284.
  34. Luttikholt, A. (2007), "Ultimate limit state analysis of a segmented tunnel lining - Results of Full-scale Tests Compared to Finite Element Analysis", Master thesis, Delft University of Technology (TU Delft), Delft.
  35. Molins, C. and Arnau, O. (2011), "Experimental and analytical study of the structural response of segmental tunnel linings based on an in situ loading test: Part 1: Test configuration and execution", Tunn. Undergr. Sp. Tech., 26(6), 764-777. https://doi.org/10.1016/j.tust.2011.05.002.
  36. Nematollahi, M., Molladavoodi, H. and Dias, D. (2018), "Three-dimensional numerical simulation of the Shiraz subway second line-influence of the segmental joints geometry and of the lagging distance between twin tunnels' faces", Eur. J. Environ. Civ. Eng., 24(10), 1606-1622. https://doi.org/10.1080/19648189.2018.1476270.
  37. Nematollahi, M. and Dias, D. (2019), "Three-dimensional numerical simulation of pile-twin tunnels interaction - Case of the Shiraz subway line", Tunn. Undergr. Sp. Tech., 86, 75-88. https://doi.org/10.1016/j.tust.2018.12.002.
  38. Ramesh, A., Hajihassani, M. and Rashiddel, A. (2020), "Ground movements prediction in shield-driven tunnels using gene expression programming", Open Constr. Build. Technol. J., 14, 286-297. https://doi.org/10.2174/1874836802014010286.
  39. Ramsheh, F.A., Rashiddel, A. and Dias, D. (2021), "3D numerical simulations of tunneling induced soil deformations", J. Phys. Conference Series, 1973(1), 012207. https://doi:10.1088/1742-6596/1973/1/012207.
  40. Rashiddel, A., Kharghani, M., Dias, D. and Hajihassani, M. (2020), "Numerical study of the segmental tunnel lining behavior under a surface explosion - Impact of the longitudinal joints shape", Comput. Geotech., 128, 103822. https://doi.org/10.1016/j.compgeo.2020.103822.
  41. Rezaei, A.H., Shirzehhagh, M. and Golpasand, M.R.B. (2019), "EPB tunneling in cohesionless soils: A study on Tabriz Metro settlements", Geomech. Eng., 19(2), 153-165. https://doi.org/10.12989/gae.2019.19.2.153.
  42. Sedarat, H., Kozak, A., Hashash, Y.M.A., Shamsabadi, A. and Krimotat, A. (2009), "Contact interface in seismic analysis of circular tunnels", Tunn. Undergr. Sp. Tech., 24(4), 482-490. https://doi.org/10.1016/j.tust.2008.11.002.
  43. Stiros, S. and Kontogianni, V. (2009), "Mean deformation tensor and mean deformation ellipse of an excavated tunnel section", Int. J. Rock Mech. Min. Sci., 46(8), 1306-1314. https://doi.org/10.1016/j.ijrmms.2009.02.013.
  44. Plizzari, G.A. and Tiberti, G. (2006), "Steel fibers as reinforcement for precast tunnel segments", Tunn. Undergr. Sp. Tech., 21(3), 438-439. https://doi.org/10.1016/j.tust.2005.12.079.
  45. Teachavorasinskun, S. and Chub-uppakarn, T. (2010), "Influence of segmental joints on tunnel lining", Tunn. Undergr. Sp. Tech., 25(4), 490-494. https://doi.org/10.1016/j.tust.2010.02.003.
  46. Vigle, L. (2001), "Design, Manufacturing and Application of Tunnel Segments", International Training course, Sargans, Switzerland.
  47. Van der Vliet, C. (2006), "Langsvoeggedrag op basis van de elasticiteitstheorie, Een aanscherping van de janssen-relatie", Bouwdienst Rijkswaterstaat.
  48. Wang, F.Y., Zhou, M.L., Zhang, D.M., Huang, H.W. and Chapman, D. (2019), "Random evolution of multiple cracks and associated mechanical behaviors of segmental tunnel linings using a multiscale modeling method", Tunn. Undergr. Sp. Tech., 90, 220-230. https://doi.org/10.1016/j.tust.2019.05.008.
  49. Wood, A.M. (1975), "The circular tunnel in elastic ground", Geotechnique, 25(1), 115-127. https://doi.org/10.1680/geot.1975.25.1.115.
  50. Xue, Y., Li, X., Qiu, D., Ma, X., Kong, F., Qu, C. and Zhao, Y. (2019), "Stability evaluation for the excavation face of shield tunnel across the Yangtze River by multi-factor analysis", Geomech. Eng., 19(3), 283-293. http://doi.org/10.12989/gae.2019.19.3.283.
  51. Yanzhi, Y., Weiwei, Z., Jianwei, W. and Zhihao, Y. (2014), "Three-dimensional orthotropic equivalent modelling method of large-scale circular jointed lining", Tunn. Undergr. Spa. Tech., 44, 33-41. https://doi.org/10.1016/j.tust.2014.07.002.
  52. Yu, H., Cai, C., Bobet, A., Zhao, X. and Yuan, Y. (2019), "Analytical solution for longitudinal bending stiffness of shield tunnels", Tunn. Undergr. Spa. Tech., 83, 27-34. https://doi.org/10.1016/j.tust.2018.09.011.
  53. Zaheri, M., Ranjbarnia, M. and Dias, D. (2020), "3D numerical investigation of segmental tunnels performance crossing a dip-slip fault", Geomech. Eng., 23(4), 351-364. https://doi.org/10.12989/gae.2020.23.4.351.
  54. Zhang, J.L., Schlappal, T., Yuan, Y., Mang, H.A. and Pichler, B. (2019), "The influence of interfacial joints on the structural behavior of segmental tunnel rings subjected to ground pressure", Tunn. Undergr. Sp. Tech., 84, 538-556. https://doi.org/10.1016/j.tust.2018.08.025.
  55. Zheng, G., Cui, T., Cheng, X., Diao, Y., Zhang, T., Sun, J. and Ge, L. (2017), "Study of the collapse mechanism of shield tunnels due to the failure of segments in sandy ground", Eng. Fail. Anal., 79, 464-490. https://doi.org/10.1016/j.engfailanal.2017.04.030.