참고문헌
- AASHTO LRFD (2020), Bridge Design Specifications 9th edition, American Association of State Highway and Transportation Officials, Washington, D.C.
- Abuodeh, O.R., Abdalla, J.A. and Hawileh, R.A. (2020), "Prediction of shear strength and behavior of RC beams strengthened with externally bonded FRP sheets using machine learning techniques", Compos. Struct., 234, 111698. https://doi.org/10.1016/j.compstruct.2019.111698.
- ACI Committee 318 (2019), 'Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19)', American Concrete Institute. Farrnington Hills, Michigan 48333-9094.
- Balakrishnama, S. and Ganapathiraju, A. (1998), "Linear discriminant analysis-a brief tutorial", Institute for Signal and information Processing, 18, 1-8.
- Bayrak, O., Larson, N., Gomez, E.F. (2013), "Shear Cracking in Inverted-T Straddle Bents", Research Report No. 0-6416, The University of Texas, Texas.
- Berrar, D. (2018), "Bayes' theorem and naive bayes classifier", Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, Elsevier Science Publisher, Amsterdam, The Netherlands, 403-412.
- Birrcher, D., Tuchscherer, R., Huizinga, M., Bayrak, O., Wood, S.L. and Jirsa, J.O. (2009), "Strength and serviceability design of reinforced concrete deep beams", No. FHWA/TX-09/0-5253-1.
- Chalioris, C.E. and Karayannis, C.G. (2009), "Effectiveness of the use of steel fibres on the torsional behaviour of flanged concrete beams", Cement Concrete Compos., 31(5), 331-341. https://doi.org/10.1016/j.cemconcomp.2009.02.007.
- Cheung, A., Cabrera, C., Sarabandi, P., Nair, K.K., Kiremidjian, A. and Wenzel, H. (2008), "The application of statistical pattern recognition methods for damage detection to field data", Smart Mater. Struct., 17(6), 065023. https://doi.org/10.1088/0964-1726/17/6/065023.
- Chou, J.S., Tsai, C.F., Pham, A.D. and Lu, Y.H. (2014), "Machine learning in concrete strength simulations: Multi-nation data analytics", Constr. Build. Mater., 73, 771-780. https://doi.org/10.1016/j.conbuildmat.2014.09.054.
- Dantas, A.T.A., Leite, M.B. and de Jesus Nagahama, K. (2013), "Prediction of compressive strength of concrete containing construction and demolition waste using artificial neural networks", Constr. Build. Mater., 38, 717-722. https://doi.org/10.1016/j.conbuildmat.2012.09.026.
- Deifalla, A. and A. Ghobarah (2014), "Behavior and analysis of inverted T-shaped RC beams under shear and torsion", Eng. Struct., 68, 57-70. https://doi.org/10.1016/j.engstruct.2014.02.011.
- Deifalla, A. and Ghobarah, A. (2006), "Assessing the north american bridge codes for the design of T-girders under torsion and shear". Proceeding of the 7th international conference on short & medium span bridges, Montreal.
- Deifalla, A. and Ghobarah, A. (2006), "Calculating the thickness of FRP jacket for shear and torsion strengthening of RC T-Girders". in third international conference on FRP composites in civil engineering (CICE), Miami, FL.
- Dietterich, T.G. (2000), "Ensemble methods in machine learning", International workshop on multiple classifier systems, Springer.
- Fereig, S. and Smith, K. (1977), "Indirect loading on beams with short shear spans", Journal Proceedings.
- Fernandez Gomez, E. (2012), "Design criteria for strength and serviceability of inverted-T straddle bent caps", PhD dissertation, The University of Texas, Texas.
- Furlong, R. and Mirza, S. (1974), Strength and serviceability of inverted-T beam cabs subjected to combined flexure, shear and torsion.
- Furlong, R.W., Ferguson, P.M. and Ma, J.S. (1971), "Shear and anchorage study of reinforcement in inverted T-beam bent cap girders", Center for highway research, University of Texas at Austin, 113.
- Galal, K. and Sekar, M. (2008), "Rehabilitation of RC inverted-T girders using anchored CFRP sheets", Compos. Part B: Eng., 39(4), 604-617. https://doi.org/10.1016/j.compositesb.2007.09.001.
- Garber, D.B. (2011), "Shear cracking in inverted-T straddle bents", PhD dissertation, The University of Texas, Texas.
- Garber, D.B., Varney, N.L., Gomez, E.F. and Bayrak, O. (2017), "Performance of ledges in inverted-T beams", ACI Struct. J., 114(2), 487-498. https://doi.org/10.14359/51689451.
- Gonzalez, M.P. and Zapico, J.L. (2008), "Seismic damage identification in buildings using neural networks and modal data", Comput. Struct., 86(3-5), 416-426. https://doi.org/10.1016/j.compstruc.2007.02.021.
- Gui, G., Pan, H., Lin, Z., Li, Y. and Yuan, Z. (2017), "Data-driven support vector machine with optimization techniques for structural health monitoring and damage detection", KSCE J. Civil Eng., 21(2), 523-534. https://doi.org/10.1007/s12205-017-1518-5.
- Gul, M. and Catbas, F.N. (2009), "Statistical pattern recognition for structural health monitoring using time series modeling: theory and experimental verifications", Mech. Syst. Signal Pr., 23(7), 2192-2204. https://doi.org/10.1016/j.ymssp.2009.02.013.
- He, L., Guo, H., Jin, Y., Zhuang, X., Rabczuk, T. and Li, Y. (2022), "Machine-learning-driven on-demand design of phononic beams", Science China Physics, Mechanics & Astronomy, 65(1), 1-12. https://doi.org/10.1007/s11425-020-1802-6
- Hedia, M.H., El-Metwally, S.E. and Yousef, A.M. (2020), "Behavior of Ledges in Inverted-T Beams", Ms.c. Dissertation, Mansoura University, Mansoura.
- Hedia, M.H., El-Metwally, S.E. and Yousef, A.M. (2020), "Design of reinforced concrete ledge beams safety and economy", Eng. Res. J., 166, 242-261. https://doi.org/10.21608/erj.2020.138830
- Karayannis, C. (1995), "Torsional analysis of flanged concrete elements with tension softening", Comput. Struct., 54(1), 97-110. https://doi.org/10.1016/0045-7949(94)00299-I.
- Karayannis, C.G. and Chalioris, C.E. (2000), "Experimental validation of smeared analysis for plain concrete in torsion", J. Struct. Eng., 126(6), 646-653. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:6(646).
- Keller, J.M., Gray, M.R. and Givens, J.A. (1985), "A fuzzy k-nearest neighbor algorithm", IEEE T. Syst. Man Cy., 4, 580-585. https://doi.org/10.1109/TSMC.1985.6313426.
- Klein, G.J. (1986), "Design of spandrel beams", PCI J., 31, 76-124. https://doi.org/10.15554/pcij.09011986.76.124.
- Larson, N., Gomez, E.F., Garber, D., Bayrak, O. and Ghannoum, W. (2013), "Strength and serviceability design of reinforced concrete inverted-T beams", Research Report No. FHWA/TX-13/0-6416-1. 2013, The University of Texas, Texas.
- Ly, H.B., Le, T.T., Vu, H.L.T., Tran, V.Q., Le, L.M. and Pham, B.T. (2020), "Computational hybrid machine learning based prediction of shear capacity for steel fiber reinforced concrete beams", Sustainability, 12(7), 2709. https://doi.org/10.3390/su12072709.
- Markou, G. and Bakas, N.P, (2021), "Prediction of the shear capacity of reinforced concrete slender beams without stirrups by applying artificial intelligence algorithms in a big database of beams generated by 3d nonlinear finite element analysis", Comput. Concrete, 28(6), 533-547. https://doi.org/10.12989/cac.2021.28.6.533.
- Mirza, S. and Furlong, R. (1985), "Design of reinforced and prestressed concrete inverted T beams for bridge structures", PCI J., 30(4), 112-137. https://doi.org/10.15554/pcij.07011985.112.136
- Mirza, S., Furlong, R. and Ma, J. (1989), "Flexural shear and ledge reinforcement in reinforced concrete inverted T-girders", Struct. J., 85(5), 509-520. https://doi.org/10.14359/2790.
- Mirza, S.A. and Furlong, R.W. (1983), "Serviceability behavior and failure mechanisms of concrete inverted T-beam bridge bent caps", J. Proceedings, 80(4), 294-304. https://doi.org/10.14359/10850.
- Mirza, S.A. and Furlong, R.W. (1983), "Strength criteria for concrete inverted T girders", Struct. Eng., 109(8), 1836-1853. https://doi.org/10.1016/j.engstruct.2014.02.011.
- Noble, W.S. (2006), "What is a support vector machine?", Nature Biotechnol., 24(12), 1565-1567. https://doi.org/10.1038/nbt1206-1565.
- PCI Design Handbook (2020), 8th edition Precast and Prestressed Concrete. Chicago: Precast/Prestressed Concrete Institute.
- Rahman, J., Ahmed, K.S., Khan, N.I., Islam, K. and Mangalathu, S., (2021), "Data-driven shear strength prediction of steel fiber reinforced concrete beams using machine learning approach", Eng. Struct., 233, 111743. https://doi.org/10.1016/j.engstruct.2020.111743.
- Reddy, T.A., Devi, K.R. and Gangashetty, S.V. (2011), "Multilayer feedforward neural network models for pattern recognition tasks in earthquake engineering", Proceedings of the International Conference on Advanced Computing, Networking and Security, Springer, Berlin, Heidelberg.
- Rokach, L. and Maimon, O. (2005), "Decision trees. Data mining and knowledge discovery handbook", Springer.
- Salehi, H., Das, S., Chakrabartty, S., Biswas, S. and Burgueno, R. (2018), "Structural damage identification using image-based pattern recognition on event-based binary data generated from self-powered sensor networks", Struct. Control Health Monit., 25(4), e2135. https://doi.org/10.1002/stc.2135.
- Salehi, H., Das, S., Chakrabartty, S., Biswas, S. and Burgueno, R. (2019), "An algorithmic framework for reconstruction of time-delayed and incomplete binary signals from an energy-lean structural health monitoring system", Eng. Struct., 180, 603-620. https://doi.org/10.1016/j.engstruct.2018.11.072.
- Salman, W.A., El-kersh, I.H., Lotfy, E.M. and Ahmed, M.A. (2019), "Behavior of reinforced concrete inverted T-section beams containing Nano-silica", IOSR J. Mech. Civil Eng. (IOSR-JMCE), 16(5), 13-22.
- Siddique, R., Aggarwal, P. and Aggarwal, Y. (2011), "Prediction of compressive strength of self-compacting concrete containing bottom ash using artificial neural networks", Adv. Eng. Software, 42(10),780-786. https://doi.org/10.1016/j.advengsoft.2011.05.016.
- Smith, K. and Fereig, S. (1974), "Effect of loading and supporting conditions on the shear strength of deep beams", Special Publication, 42, 441-460.
- Solhmirzaei, R., Salehi, H., Kodur, V. and Naser, M.Z. (2020), "Machine learning framework for predicting failure mode and shear capacity of ultra high performance concrete beams", Eng. Struct., 224, 111221. https://doi.org/10.1016/j.engstruct.2020.111221.
- Tan, K., Kong, F. and Weng, L. (1997), "High strength concrete deep beams subjected to combined top-and bottom-loading", Struct. Engineer, 75(11).
- Uddin, M.N., Yu, K., Li, L., Ye, J., Tafsirojjaman, T. and Alhaddad, W. (2022), "Developing machine learning model to estimate the shear capacity for RC beams with stirrups using standard building codes", Innov. Infrastructure Solutions, 7(3), 1-20. https://doi.org/10.1007/s41062-022-00826-8.
- Varney, N.L., Fernandez-Gomez, E., Garber, D.B., Ghannoum, W.M. and Bayrak, O. (2015), "Inverted-T Beams: experiments and strut-and-tie modeling", ACI Struct. J., 112(2), 147-156.
- Wakjira, T.G., Al-Hamrani, A., Ebead, U. and Alnahhal, W. (2022), "Shear capacity prediction of FRP-RC beams using single and ensenble ExPlainable Machine learning models", Compos. Struct., 287, 115381. https://doi.org/10.1016/j.compstruct.2022.115381.
- Yan, K. and Shi, C. (2010), "Prediction of elastic modulus of normal and high strength concrete by support vector machine", Constr. Build. Mater., 24(8), 1479-1485. https://doi.org/10.1016/j.conbuildmat.2010.01.006.
- Yang, W.Y., Cao, W., Kim, J., Park, K.W., Park, H.H., Joung, J., Ro, J.S., Lee, H.L., Hong, C.H. and Im, T. (2020), "Applied numerical methods using MATLAB", John Wiley & Sons, Hoboken, New Jersey, USA.
- Zhang, J., Sun, Y., Li, G., Wang, Y., Sun, J. and Li, J. (2020), "Machine-learning-assisted shear strength prediction of reinforced concrete beams with and without stirrups", Eng. with Comput., 1-15. https://doi.org/10.1007/s00366-020-01076-x.
- Zhu, R.H., Dhonde, H. and Hsu, T.T.C. (2003), "Crack control for ledges in inverted'-T 'bent caps", Research Report No 0-1854-5m University of Houston, Department of Civil & Environmental Engineering.