DOI QR코드

DOI QR Code

Recent Studies on Performance Enhancement of Polycrystal SnSe Thermoelectric Materials

다결정 SnSe 열전 재료의 성능 개선 연구 동향

  • Jung, Myeong Jun (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Choi, Byung Joon (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 정명준 (서울과학기술대학교 신소재공학과) ;
  • 최병준 (서울과학기술대학교 신소재공학과)
  • Received : 2022.04.20
  • Accepted : 2022.04.24
  • Published : 2022.04.28

Abstract

Thermoelectric materials can reversely convert heat and electricity into each other; therefore, they can be very useful for energy harvesting from heat waste. Among many thermoelectrical materials, SnSe exhibits outstanding thermoelectric performance along the particular direction of a single crystal. However, single-crystal SnSe has poor mechanical properties and thus it is difficult to apply for mass production. Therefore, polycrystalline SnSe materials may be used to replace single-crystal SnSe by overcoming its inferior thermoelectric performance owing to surface oxidation. Considerable efforts are currently focused on enhancing the thermoelectric performance of polycrystalline SnSe. In this study, we briefly review various enhancement methods for SnSe thermoelectric materials, including doping, texturing, and nano-structuring. Finally, we discuss the future prospects of SnSe thermoelectric powder materials.

Keywords

References

  1. J. Wei, L. Yang, Z. Ma, P. Song, M. Zhang, J. Ma, F. Yang and X. Wang: J. Mater. Sci., 55 (2020) 12642. https://doi.org/10.1007/s10853-020-04949-0
  2. J. R. Sootsman, D. Y. Chung, and M. G. Kanatzidis: Angew. Chem. Int. Ed., 48 (2009) 8616. https://doi.org/10.1002/anie.200900598
  3. C. Zhou, Y. K. Lee, Y. Yu, S. Byun, Z.-Z. Luo, H. Lee, B. Ge, Y.-L. Lee, X. Chen, J. Y. Lee, O. Cojocaru-Miredin, H. Chang, J. Im, S.-P. Cho, M. Wuttig, V. P. Dravid, M. G. Kanatzidis and I. Chung: Nat. Mater., 20 (2021) 1378. https://doi.org/10.1038/s41563-021-01064-6
  4. G. J. Snyder and E. S. Toberer: Nat. Mater., 7 (2008) 105. https://doi.org/10.1038/nmat2090
  5. Z.-G. Chen, X. Shi, L.-D. Zhao and J. Zou: Prog. Mater. Sci., 97 (2018) 283. https://doi.org/10.1016/j.pmatsci.2018.04.005
  6. F. Chu, Q. Zhang, Z. Zhou, D. Hou, L. Wang and W. Jiang: J. Alloys Compd., 741 (2018) 756. https://doi.org/10.1016/j.jallcom.2018.01.178
  7. N. Kumar Singh, S. Bathula, B. Gahtori, K. Tyagi, D. Haranath and A. Dhar: J. Alloys Compd., 668 (2016) 1528.
  8. C.-L. Chen, H. Wang, Y.-Y. Chen, T. Day and G. J. Snyder: J. Mater. Chem. A, 2 (2014) 11171. https://doi.org/10.1039/c4ta01643b
  9. J. C.Li, D. Li, X. Y. Qin and J. Zhang: Scr. Mater., 126 (2017) 6. https://doi.org/10.1016/j.scriptamat.2016.08.009
  10. G. Han, S. R. Popuri, H. F. Greer, L. F. Llin, J.-W. G. Bos, W. Zhou, D. J. Paul, H. Menard, A. R. Knox, A. Montecucco, J. Siviter, E. A. Man, W.-G. Li, Manosh C. Paul, M. Gao, T. Sweet, R. Freer, F. Azough, H. Baig, T. K. Mallick and D. H. Gregory: Adv. Energy Mater., 7 (2017) 1602328. https://doi.org/10.1002/aenm.201602328
  11. Q. Zhang, E. K. Chere, J. Sun, F. Cao, K. Dahal, S. Chen, G. Chen and Z. Ren: Adv. Energy Mater., 5 (2015) 1500360. https://doi.org/10.1002/aenm.201500360
  12. X. Wang, J. Xu, G. Liu, Y. Fu, Z. Liu, X. Tan, H. Shao, H. Jiang, T. Tan and J. Jiang: Appl. Phys. Lett., 108 (2016) 083902. https://doi.org/10.1063/1.4942890
  13. Song Chen, Kefeng Cai, Wenyu Zhao: Phys. B: Condens. Matter., 407 (2012) 41549.
  14. P.-P. Shang, J. Dong, J. Pei, F.-H. Sun, Y. Pan, H. Tang, B.-P. Zhang, L.-D. Zhao and J.-F. Li: Research, 2019 (2019) 10.
  15. J. O. M. Ferreiro, D. E. Diaz-Droguett, D. Celentano, J. S. Reparaz, C. M. S. Torres, S. Ganguli and T. Lu: Appl. Therm. Eng., 111 (2017) 1426. https://doi.org/10.1016/j.applthermaleng.2016.07.198
  16. S. R. Popuri, M. Pollet, R. Decourt, F. D. Morrison, N. S. Bennett and J. W. G. Bos: J. Mater. Chem. C., 4 (2016) 1685. https://doi.org/10.1039/C6TC00204H
  17. Z. H. Ge, K. Wei, H. Lewis, J. Martin and G. S. Nolas: J. Solid. State. Chem., 225 (2015) 354. https://doi.org/10.1016/j.jssc.2015.01.004
  18. Y. Li, F. Li, Ji. Dong, Z. Ge, F. Kang, J. He, H. Du, B. Lia and J.-F. Li: J. Mater. Chem. C., 4 (2016) 2047. https://doi.org/10.1039/C5TC04202J
  19. D. Feng, Z.-H. Ge, D. Wu, Y.-X. Chen, T. Wu, J. Li and J. He: Phys. Chem. Chem. Phys., 18 (2016), 31821. https://doi.org/10.1039/c6cp06466c
  20. X. Shi, An. Wu, W. Liu, R. Moshwan, Y. Wang, Z.-G. Chen and J. Zou: ACS Nano, 12 (2018) 11417. https://doi.org/10.1021/acsnano.8b06387
  21. J. A. Hernandez, A. Ruiz, L. F. Fonseca, M. T. Pettes, M. Jose-Yacaman and A. Benitez: Sci. Rep., 8 (2018) 1.
  22. H. Ju and J. Kim: ACS Nano, 10 (2016) 5730. https://doi.org/10.1021/acsnano.5b07355
  23. R. Zhang, Z. Zhou, Q. Yao, N. Qi and Z. Chen: Phys. Chem. Chem. Phys., 23 (2021) 3794. https://doi.org/10.1039/D0CP05548D
  24. Y.-X. Chen, Z.-H. Ge, M. Yin, D. Feng, X.-Q. Huang, W. Zhao and J. He: Adv. Funct. Mater., 26 (2016) 6836. https://doi.org/10.1002/adfm.201602652
  25. H. Ju and J. Kim: Ceram. Int., 42 (2016) 9550. https://doi.org/10.1016/j.ceramint.2016.03.035
  26. D. Li, J.C. Li, X.Y. Qin, J. Zhang, H. X. Xin, C. J. Song and L. Wang: Energy, 116 (2016) 861. https://doi.org/10.1016/j.energy.2016.10.023
  27. F. Q. Wang, S. Zhang, J. Yuc and Q. Wang: Nanoscale, 7 (2015) 15962. https://doi.org/10.1039/c5nr03813h
  28. G. Tang, W. Wei, J. Zhang, Y. Li, X. Wang, G. Xu, C. Chang, Z. Wang, Y. Du and L.-D. Zhao: J. Am. Chem. Soc., 138 (2016) 13647. https://doi.org/10.1021/jacs.6b07010
  29. S. Li, Y. Liu, F. Liu, D. He, J. He, J. Luo, Y. Xiao and F. Pan: Nano Energy, 49 (2018) 257. https://doi.org/10.1016/j.nanoen.2018.04.047
  30. K.-C. Kim, S.-S. Lim, S. H. Lee, J. Hong, D.-Y. Cho, A. Y. Mohamed, C. M. Koo, S.-H. Baek, J.-S. Kim and S. K. Kim: ACS Nano, 13 (2019) 7146. https://doi.org/10.1021/acsnano.9b02574
  31. S. Lee, T.-J. Park and S. K. Kim: J. Powder Mater., 29 (2022) 56.
  32. M. J. Jung, Y. J. Yun, J. Byun and B. J. Choi: J. Powder Mater., 28 (2021) 239.