• Title/Summary/Keyword: Nano-structuring

Search Result 14, Processing Time 0.038 seconds

Recent Studies on Performance Enhancement of Polycrystal SnSe Thermoelectric Materials (다결정 SnSe 열전 재료의 성능 개선 연구 동향)

  • Jung, Myeong Jun;Choi, Byung Joon
    • Journal of Powder Materials
    • /
    • v.29 no.2
    • /
    • pp.152-158
    • /
    • 2022
  • Thermoelectric materials can reversely convert heat and electricity into each other; therefore, they can be very useful for energy harvesting from heat waste. Among many thermoelectrical materials, SnSe exhibits outstanding thermoelectric performance along the particular direction of a single crystal. However, single-crystal SnSe has poor mechanical properties and thus it is difficult to apply for mass production. Therefore, polycrystalline SnSe materials may be used to replace single-crystal SnSe by overcoming its inferior thermoelectric performance owing to surface oxidation. Considerable efforts are currently focused on enhancing the thermoelectric performance of polycrystalline SnSe. In this study, we briefly review various enhancement methods for SnSe thermoelectric materials, including doping, texturing, and nano-structuring. Finally, we discuss the future prospects of SnSe thermoelectric powder materials.

Pulsed Electrochemical Deposition for 3D Micro Structuring

  • Park, Jung-Woo;Ryu, Shi-Hyoung;Chu, Chong-Nam
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.4
    • /
    • pp.49-54
    • /
    • 2005
  • In this paper, micro structuring technique using localized electrochemical deposition (LECD) with ultra short pulses was investigated. Electric field in electrochemical cell was localized near the tool tip end region by applying pulses of a few hundreds of nano second duration, Pt-Ir tip was used as a counter electrode and copper was deposited on the copper substrate in mixed electrolyte of 0.5 M $CuSO_4$ and 0.5 M $H_2SO_4$, The effectiveness of this technique was verified by comparison with ECD using DC voltage. The deposition characteristics such as size, shape, surface, and structural density according to applied voltage and pulse duration were investigated. The proper condition was selected based on the results of the various experiments. Micro columns less than $10{\mu}m$ in diameter were fabricated using this technique. The real 3D micro structures such as micro spring and micro pattern were made by the presented method.

Design and Implementation of an Ontology-based Knowledge Management System

  • Hideki-Mima;Yoon, Tae-Sung;Katsumori-Matsushima
    • Proceedings of the CALSEC Conference
    • /
    • 2004.02a
    • /
    • pp.107-111
    • /
    • 2004
  • The purpose of the study is to develop an integrated knowledge management system for the domains of genome and nano-technology, in which terminology-based literature mining, knowledge acquisition, knowledge structuring, and knowledge retrieval are combined. The system supports integrating different types of databases (papers and patents, technologies and innovations) and retrieving different types of knowledge simultaneously. The main objective of the system is to facilitate knowledge acquisition from documents and new knowledge discovery through a terminology-based similarity calculation and a visualization of automatically structured knowledge. Implementation issue of the system is also mentioned.

  • PDF

Alignment Algorithm for Nano-scale Three-dimensional Printing System (나노스케일 3 차원 프린팅 시스템을 위한 정렬 알고리즘)

  • Jang, Ki-Hwan;Lee, Hyun-Taek;Kim, Chung-Soo;Chu, Won-Shik;Ahn, Sung-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.12
    • /
    • pp.1101-1106
    • /
    • 2014
  • Hybrid manufacturing technology has been advanced to overcome limitations due to traditional fabrication methods. To fabricate a micro/nano-scale structure, various manufacturing technologies such as lithography and etching were attempted. Since these manufacturing processes are limited by their materials, temperature and features, it is necessary to develop a new three-dimensional (3D) printing method. A novel nano-scale 3D printing system was developed consisting of the Nano-Particle Deposition System (NPDS) and the Focused Ion Beam (FIB) to overcome these limitations. By repeating deposition and machining processes, it was possible to fabricate micro/nano-scale 3D structures with various metals and ceramics. Since each process works in different chambers, a transfer process is required. In this research, nanoscale 3D printing system was briefly explained and an alignment algorithm for nano-scale 3D printing system was developed. Implementing the algorithm leads to an accepted error margin of 0.5% by compensating error in rotational, horizontal, and vertical axes.

Pulsed laser surface modification for heat treatment and nano-texturing on biometal surface

  • Jeon, Hojeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.118.1-118.1
    • /
    • 2016
  • The laser surface modification has been reported for its functional applications for improving tribological performance, wear resistance, hardness, and corrosion property. In most of these applications, continuous wave lasers and pulsed lasers were used for surface melting, cladding, alloying. Since flexibility in processing, refinement of microstructure and controlling the surface properties, technology utilizing lasers has been used in a number of fields. Especially, femtosecond laser has great benefits compared with other lasers because its pulsed width is much shorter than characteristic time of thermal diffusion, which leads to diminish heat affected zone. Moreover, laser surface engineering has been highlighted as an effective tool for micro/nano structuring of materials in the bio application field. In this study, we applied femtosecond and nanosecond pulsed laser to treat biometals, such as Mg, Mg alloy, and NiTi alloy, by heating to improve corrosion properties and functionalize their surface controlling cell response as implantable biomedical devices.

  • PDF

Single Exposure Imaging of Talbot Carpets and Resolution Characterization of Detectors for Micro- and Nano- Patterns

  • Kim, Hyun-su;Danylyuk, Serhiy;Brocklesby, William S.;Juschkin, Larissa
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.245-250
    • /
    • 2016
  • In this paper, we demonstrate a self-imaging technique that can visualize longitudinal interference patterns behind periodically-structured objects, which is often referred to as Talbot carpet. Talbot carpet is of great interest due to ever-decreasing scale of interference features. We demonstrate experimentally that Talbot carpets can be imaged in a single exposure configuration revealing a broad spectrum of multi-scale features. We have performed rigorous diffraction simulations for showing that Talbot carpet print can produce ever-decreasing structures down to limits set by mask feature sizes. This demonstrates that large-scale pattern masks may be used for direct printing of features with substantially smaller scales. This approach is also useful for characterization of image sensors and recording media.

Porous Bio-degradable Nano-fiber Machining by Femtosecond Laser (다공성 친바이오 나노섬유 극초단 레이저 가공특성 연구)

  • Choi, Hae-Woon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.3
    • /
    • pp.339-345
    • /
    • 2012
  • Electrospun meshed poly-caprolactone PCL was patterned by femtosecond laser with linear grooves. As parametric variables, focus spot size, pulse energy, and scanning speed were varied to determine the affects on groove size and the characteristics of the electrospun fiber at the edges of these grooves. The femtosecond laser was seen to be an effective means for flexibly structuring the surface of ES PCL scaffolds and the width of the ablated grooves was well controlled by laser energy and focus spot size. The ablation threshold was measured to be $14.9J/cm^2$ which is a little higher than other polymers. These affects were attributed to optical multiple reflections inside nano-fibers. By the laser-induced plasma at higher pulse energies, some melting of fibers was observed.

Nano-scale Information Materials Using Organic/Inorganic Templates (유기/무기 나노 템플레이트를 이용한 나노 정보소재 합성 연구)

  • Lee, Jeon-Kook;Jeung, Won-Young
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.4
    • /
    • pp.149-161
    • /
    • 2004
  • The fusion of nano technology and information technology is essential to sustain the present growth rate and to induce new industry in this ever-growing information age. Considering Korean industry whose competitiveness lies heavily on information related technologies, this field will be inevitable for future. Nano materials can be described as novel materials whose size of elemental structure has been engineered at the nanometer scale. Materials in the nanometer size range exhibit fundamentally new behavior, as their size falls below the critical length scale associated with any given property. " Bottom-up' techniques involve manipulating individual atoms and molecules. Bottom-up process usually implies controlled or directed self assembly of atoms and molecules into nano structures. It resembles more closely the processes of biology and chemistry, where atoms and molecules come together to create structures such as crystals or living cells. Nano scale sensors are included in the electronics area since the diverse sensing mechanisms are often housed on a semiconductor substrate and usually give rise to an electronic signal. The application of nano technology to the chemical sensors should allow improvements in functionality such as gas sensing. In this presentation, we will discuss about the nano scale information materials and devices fabricated by using the organic/inorganic nano templates.

Study of Structural Scheme of Basic Mathematics Education in University - Focusing on life and nano-related areas - (대학 기초수학 교육 내용의 구성 방안에 관한 연구 - 생명.나노 관련 분야를 중심으로 -)

  • Seo, Jong-Jin;Ryoo, Cheon-Seoung;Choi, Eun-Mi
    • Journal of the Korean School Mathematics Society
    • /
    • v.11 no.2
    • /
    • pp.221-247
    • /
    • 2008
  • In order to find the structure and scheme of basic mathematics education in life and nano-related areas in university, I've studied how much the freshmen in those fields in the university know about the graphic expressions for the basic functions(quadratic function, rational function, irrational function, log function and trigonometric function), basic information contained in those graphs and basic high school mathematics. Also, I've examined mathematics used in books for majors related to those areas. The result of the study shows that there is a lack of understanding of the graphic expressions for basic functions, information contained in those graphs and basic high school mathematics. I've also found out that there is a difference in the amount and depth of mathematics used in each major in life and nano-related areas. According to the result of this study, the amount of understanding of freshmen with each major in basic high school mathematics needs to be reflected in structuring basic mathematics education in life and nano-related areas in university, and the amount and dept of content of mathematics should be considered in each major.

  • PDF

Quantitative rheology of polymers in high resolution structuring (미세성형공정에서의 폴리머 레올로지의 정량화)

  • Kim, Byeong-Hee;Kim, Heon-Young;Ki, Ho;Kim, Kwang-Soon;Kang, Shin-Ill
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1036-1042
    • /
    • 2003
  • The hot embossing process has been mentioned as one of major nanoreplication techniques. This is due to its simple process, low cost, high replication fidelity and relatively high throughput. As the initial step of quantitating the embossing process , simple parametric study about embossing time have been carried out using high-resolution masters which patterned by the DRIE process and laser machining. Under the various embossing time, the viscous flow of thin PMMA films into microcavities during compression force has been investigated. Also, a study about simulating the viscous flow during embossing process has planned and continuum scale FDM analysis was applied on this simulation. With currently available test data and condition, simple FDM analysis using FLOW3D was made attempt to match simulation and experiment.

  • PDF