DOI QR코드

DOI QR Code

Dynamics of Viral and Host 3D Genome Structure upon Infection

  • Meyer J. Friedman (Department and School of Medicine, University of California) ;
  • Haram Lee (College of Pharmacy, Korea University) ;
  • Young-Chan Kwon (Center for Convergent Research of Emerging Virus Infections, Korean Research Institute of Chemical Technology) ;
  • Soohwan Oh (College of Pharmacy, Korea University)
  • Received : 2022.08.12
  • Accepted : 2022.09.23
  • Published : 2022.12.28

Abstract

Eukaryotic chromatin is highly organized in the 3D nuclear space and dynamically regulated in response to environmental stimuli. This genomic organization is arranged in a hierarchical fashion to support various cellular functions, including transcriptional regulation of gene expression. Like other host cellular mechanisms, viral pathogens utilize and modulate host chromatin architecture and its regulatory machinery to control features of their life cycle, such as lytic versus latent status. Combined with previous research focusing on individual loci, recent global genomic studies employing conformational assays coupled with high-throughput sequencing technology have informed models for host and, in some cases, viral 3D chromosomal structure re-organization during infection and the contribution of these alterations to virus-mediated diseases. Here, we review recent discoveries and progress in host and viral chromatin structural dynamics during infection, focusing on a subset of DNA (human herpesviruses and HPV) as well as RNA (HIV, influenza virus and SARS-CoV-2) viruses. An understanding of how host and viral genomic structure affect gene expression in both contexts and ultimately viral pathogenesis can facilitate the development of novel therapeutic strategies.

Keywords

Acknowledgement

Soohwan Oh is supported by a Korea University Grant (K2223251) and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2022R1C1C101069911).

References

  1. Benabdallah NS, Williamson I, Illingworth RS, Kane L, Boyle S, Sengupta D, et al. 2019. Decreased enhancer-promoter proximity accompanying enhancer activation. Mol. Cell 76: 473-484.e7.
  2. Zheng H, W Xie. 2019. The role of 3D genome organization in development and cell differentiation.Nat. Rev. Mol. Cell Biol. 20: 535-550. https://doi.org/10.1038/s41580-019-0132-4
  3. Kubo N, Ishii H, Xiong X, Bianco S, Meitinger F, Hu R, et al. 2021. Promoter-proximal CTCF binding promotes distal enhancerdependent gene activation. Nat. Struct. Mol. Biol. 28: 152-161. https://doi.org/10.1038/s41594-020-00539-5
  4. Oh S, Shao J, Mitra J, Xiong F, D'antonio M, Wang R, et al. 2021. Enhancer release and retargeting activates disease-susceptibility genes. Nature 595: 735-740. https://doi.org/10.1038/s41586-021-03577-1
  5. Simonis M, Klous P, Splinter E, Moshikin Y, Willemsed R, Wit Ed, et al. 2006. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat. Genet. 38: 1348-1354. https://doi.org/10.1038/ng1896
  6. Dostie J, Richmond TA, Arnaouut RA, Selzer RR, Lee WL, Honan TA, et al. 2006. Chromosome conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res. 16: 1299-1309. https://doi.org/10.1101/gr.5571506
  7. Jager R, Migliorini G, Henrion M, Kandaswamy R, Speedy HE, Heindl A, et al. 2015. Capture Hi-C identifies the chromatin interactome of colorectal cancer risk loci. Nat. Commun. 6: 6178.
  8. Fang R, Yu M, Li G, Chee S, Liu T, Schmitt AD, et al. 2016. Mapping of long-range chromatin interactions by proximity ligationassisted ChIP-seq. Cell Res. 26: 1345-1348. https://doi.org/10.1038/cr.2016.137
  9. Fullwood MJ, Wei C-L, Ruan LY. 2009. Next-generation DNA sequencing of paired-end tags (PET) for transcriptome and genome analyses. Genome Res. 19: 521-532. https://doi.org/10.1101/gr.074906.107
  10. Sati S, G Cavalli. 2017. Chromosome conformation capture technologies and their impact in understanding genome function. Chromosoma 126: 33-44. https://doi.org/10.1007/s00412-016-0593-6
  11. Hsieh TH, Weiner A, Lajoie B, Dekker J, Fridman N, Rando OJ. 2015. Mapping nucleosome resolution chromosome folding in yeast by micro-C. Cell 162: 108-119. https://doi.org/10.1016/j.cell.2015.05.048
  12. Quinodoz SA, Bhat P, Chovanec P, Jachowicz JW, Ollikainen N, Detmar E, et al. 2022. SPRITE: a genome-wide method for mapping higher-order 3D interactions in the nucleus using combinatorial split-and-pool barcoding. Nat. Protoc. 17: 36-75. https://doi.org/10.1038/s41596-021-00633-y
  13. Beagrie RA, Scialdone A, Schueler M, Kraemer DCA, Chotalia M, Xie SQ, et al. 2017. Complex multi-enhancer contacts captured by genome architecture mapping. Nature 543: 519-524. https://doi.org/10.1038/nature21411
  14. Consortium IH. 2003. The international HapMap project. Nature 426: 789-796. https://doi.org/10.1038/nature02168
  15. Consortium EP. 2021. An integrated encyclopedia of DNA elements in the human genome. Nature 489: 57-74. https://doi.org/10.1038/nature11247
  16. Arvey A, Tempera I, Tsai K, Chen H-S, Tikhmyanova n, Klichinsky M, et al. 2012. An atlas of the Epstein-Barr virus transcriptome and epigenome reveals host-virus regulatory interactions. Cell Host Microbe. 12: 233-245. https://doi.org/10.1016/j.chom.2012.06.008
  17. Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, et al. 2014. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159: 1665-1680. https://doi.org/10.1016/j.cell.2014.11.021
  18. Quinodoz SA, Ollikainen N, Tabak B, Palla A, Schmidt JM, Detmar E, et al. 2018. Higher-order inter-chromosomal hubs shape 3D genome organization in the nucleus. Cell 174: 744-757.e24. https://doi.org/10.1016/j.cell.2018.05.024
  19. Buschle A, W Hammerschmidt. 2020. Epigenetic lifestyle of Epstein-Barr virus. Semin Immunopathol. 42: 131-142. https://doi.org/10.1007/s00281-020-00792-2
  20. Toth Z, K Brulois, JU Jung. 2013. The chromatin landscape of Kaposi's sarcoma-associated herpesvirus. Viruses 5: 1346-1373. https://doi.org/10.3390/v5051346
  21. Chen HS, Wikramasinghe P, Showe L, Lieberman PM. 2012. Cohesins repress Kaposi's sarcoma-associated herpesvirus immediate early gene transcription during latency. J. Virol. 8: 9454-9464.
  22. Zhao B, Zou J, Wang H, Jphannsen E, Peng C-W, Quackenbush Q, et al. 2011. Epstein-Barr virus exploits intrinsic B-lymphocyte transcription programs to achieve immortal cell growth. Proc. Natl. Acad. Sci. USA 108: 14902-14907. https://doi.org/10.1073/pnas.1108892108
  23. Chau CM, Zhang X-Y, McMahon SB, Lieberman PM. 2006. Regulation of Epstein-Barr virus latency type by the chromatin boundary factor CTCF. J. Virol. 80: 5723-5732. https://doi.org/10.1128/JVI.00025-06
  24. Hughes DJ, Marendy Em, Dickerson CA, Yetming KD, Sample CE, Sample JT. 2012. Contributions of CTCF and DNA methyltransferases DNMT1 and DNMT3B to Epstein-Barr virus restricted latency. J. Virol. 86: 1034-1045. https://doi.org/10.1128/JVI.05923-11
  25. Tempera I, Wiedmer A, Dheekollu D, Lieberman PM. 2010. CTCF prevents the epigenetic drift of EBV latency promoter Qp. PLoS Pathog. 6: e1001048.
  26. Chen HS, Martin KA, Lu F, Lupey LN, Mueller JM, Lieberman PM, et al. 2014. Epigenetic deregulation of the LMP1/LMP2 locus of Epstein-Barr virus by mutation of a single CTCF-cohesin binding site. J. Virol. 88: 1703-1713. https://doi.org/10.1128/JVI.02209-13
  27. Molyneux EM, Rochford R, Griffin B, Newton R, Jackson G, Menon G, et al. 2012. Burkitt's lymphoma. Lancet 379: 1234-1244. https://doi.org/10.1016/S0140-6736(11)61177-X
  28. Wang LW, Shen H, Nobre l, Ersing I, Paulo JA, Trudeau S, et al. 2019. Epstein-Barr- v-induced one-carbon metabolism drives B cell transformation. Cell Metab. 30: 539-555.e11. https://doi.org/10.1016/j.cmet.2019.06.003
  29. Wood CD, Veenstra H, Khasnis S, Gunnell A, Webb HM, Shannon-Lowe C, et al. 2016. MYC activation and BCL2L11 silencing by a tumour virus through the large-scale reconfiguration of enhancer-promoter hubs. Elife 5: e18270.
  30. Jiang S, Zhou H, liang J, Gerdt C, Wang C, Ke L, et al. 2017. The Epstein-Barr virus regulome in lymphoblastoid cells. Cell Host Microbe 22: 561-573.e4.
  31. Guo R, Jiang C, Zhang Y, Govande A, Trudeau SJ, Chen F, et al. 2020. MYC controls the epstein-barr virus lytic switch. Mol. Cell 78: 653-669.e8. https://doi.org/10.1016/j.molcel.2020.03.025
  32. Knipe DM, Lieberman PM, Jung JU, McBride AA, Morris KV, Ott M, et al. 2013. Snapshots: chromatin control of viral infection. Virology 435: 141-156. https://doi.org/10.1016/j.virol.2012.09.023
  33. Stedman W, Kang H, Lin S, Kissil JL, Bartolomei MS, Lieberman PM. 2008. Cohesins localize with CTCF at the KSHV latency control region and at cellular c-myc and H19/Igf2 insulators. EMBO J. 27: 654-666. https://doi.org/10.1038/emboj.2008.1
  34. Li DJ, Verma D, Mosbruger T, Swaminathan. 2014. CTCF and Rad21 act as host cell restriction factors for Kaposi's sarcomaassociated herpesvirus (KSHV) lytic replication by modulating viral gene transcription. PLoS Pathog. 10: e1003880.
  35. Park A, Oh S, Jung KL, Choi UY, Lee H-R, Rosenfeld MG, et al. 2020. Global epigenomic analysis of KSHV-infected primary effusion lymphoma identifies functional MYC superenhancers and enhancer RNAs. Proc. Natl. Acad. Sci. USA 117: 21618-21627. https://doi.org/10.1073/pnas.1922216117
  36. Bloom DC, NV Giordani, DL Kwiatkowski. 2010. Epigenetic regulation of latent HSV-1 gene expression. Biochim. Biophys. Acta 1799: 246-256. https://doi.org/10.1016/j.bbagrm.2009.12.001
  37. Ertel MK, Cammarata AL, Hron RJ, Neumann DM. 2012. CTCF occupation of the herpes simplex virus 1 genome is disrupted at early times postreactivation in a transcription-dependent manner. J. Virol. 86: 12741-12759. https://doi.org/10.1128/JVI.01655-12
  38. Martinez FP, Cruz R, Lu F, Plasschaert R, Deng Z, Rivera-Molina YA, et al. 2014. CTCF binding to the first intron of the major immediate early (MIE) gene of human cytomegalovirus (HCMV) negatively regulates MIE gene expression and HCMV replication. J. Virol. 88: 7389-7401. https://doi.org/10.1128/JVI.00845-14
  39. Lee JS, Raja P, Pan D, Pesola JM, Coen DM, Knioe DM. 2018. CCCTC-binding factor acts as a heterochromatin barrier on herpes simplex viral latent chromatin and contributes to poised latent infection. mBio 9: e02372-17.
  40. Lang F, Li X, Vladimirova O, Hu B, Chen G, Xiao Y,Singh V, et al. 2017. CTCF interacts with the lytic HSV-1 genome to promote viral transcription. Sci. Rep. 7: 39861.
  41. Li X, Yu Y, Lang F, Chen G, Wang E, Li L, et al. 2021. Cohesin promotes HSV-1 lytic transcription by facilitating the binding of RNA Pol II on viral genes. Virol. J. 18: 26.
  42. Morgan SM, Tanizawa H, Caruso LB, Hulse M, Kossenkov A, Madzo J, et al. 2022. The three-dimensional structure of Epstein-Barr virus genome varies by latency type and is regulated by PARP1 enzymatic activity. Nat. Commun. 13: 187.
  43. Campbell M, Watanabe T, Nakano K, Davis R, Lyu Y, Tepper CG, et al. 2018. KSHV episomes reveal dynamic chromatin loop formation with domain-specific gene regulation. Nat. Commun. 9: 49.
  44. Campbell M, Chantarasrivong C, Yanagihashi Y, Inagaki T, Davis RR, Nakano K, et al. 2022. KSHV topologically associating domains in latent and reactivated viral chromatin. J. Virol. 96: e0056522.
  45. Moquin SA, Thomas S, Whalen S, Warburton, Fernandez SG, McBride AA, et al. 2018. The epstein-barr virus episome maneuvers between nuclear chromatin compartments during reactivation. J. Virol. 92: e01413-17.
  46. Kim,KD, Tanizawa H, De Leo A, Vladimirova O, Kossenkov A, Lu F, et al. 2020. Epigenetic specifications of host chromosome docking sites for latent Epstein-Barr virus. Nat. Commun. 11: 877.
  47. Okabe A, Huang KK, Matsusaka K, Fukuyo M, Xing M, Ong X, et al. 2020. Cross-species chromatin interactions drive transcriptional rewiring in Epstein-Barr virus-positive gastric adenocarcinoma. Nat. Genet. 52: 919-930. https://doi.org/10.1038/s41588-020-0665-7
  48. Caruso LB, Gou R, Keith K, Madzo J, Maestri D, Boyle S, et al. 2022. The nuclear lamina binds the EBV genome during latency and regulates viral gene expression. PLoS Pathog. 18: e1010400.
  49. Wang L, Laing J, Yan B, Zhou H, Ke L, Wang C, et al. 2020. Epstein-Barr virus episome physically interacts with active regions of the host genome in lymphoblastoid cells. J. Virol. 94: e01390-20.dk..
  50. Kumar A, Lyu Y, Yanagihashi Y, Chantarasrivong C, Majerciak V, Salem M, et al. 2022. KSHV episome tethering sites on host chromosomes and regulation of latency-lytic switch by CHD4. Cell Rep. 39: 110788.
  51. Ballestas ME, KM Kaye. 2011. The latency-associated nuclear antigen, a multifunctional protein central to Kaposi's sarcomaassociated herpesvirus latency. Future Microbiol. 6: 1399-1413. https://doi.org/10.2217/fmb.11.137
  52. Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah kv, snijder PJ, et al. 1999. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol. 189: 12-19. https://doi.org/10.1002/(SICI)1096-9896(199909)189:1<12::AID-PATH431>3.0.CO;2-F
  53. McLaughlin-Drubin ME, K Munger. 2009. Oncogenic activities of human papillomaviruses. Virus Res. 143: 195-208. https://doi.org/10.1016/j.virusres.2009.06.008
  54. Cao C, Hong P, Huang X, Lin D, Cao G, Wang L, et al. 2020. HPV-CCDC106 integration alters local chromosome architecture and hijacks an enhancer by three-dimensional genome structure remodeling in cervical cancer. J. Genet. Genomics 47: 437-450. https://doi.org/10.1016/j.jgg.2020.05.006
  55. Zhou, C., Z.K. Tuong, and I.H. Frazer, 2019. Papillomavirus immune evasion strategies target the infected cell and the local immune system. Front. Oncol. 2019. 9: 682.
  56. Mehta K, Gunasekharan V, Satsuka A, Laimins LA. 2015. Human papillomaviruses activate and recruit SMC1 cohesin proteins for the differentiation-dependent life cycle through association with CTCF insulators. PLoS Pathog. 11: e1004763.
  57. Mehta K, Laimins. 2018. Human papillomaviruses preferentially recruit DNA repair factors to viral genomes for rapid repair and amplification. mBio 9: e00064-18.
  58. Paris C, P Pe ntland I, Groves I, Roberts DC, Powis SJ, Coleman N, et al. 2015. CCCTC-binding factor recruitment to the early region of the human papillomavirus 18 genome regulates viral oncogene expression. J. Virol. 89: 4770-4785. https://doi.org/10.1128/JVI.00097-15
  59. Pentland I, Compo-Leon K, Cotic M, Davies K-J, Wood CD, Groves IJ, et al. 2018. Disruption of CTCF-YY1-dependent looping of the human papillomavirus genome activates differentiation-induced viral oncogene transcription. PLoS Biol. 16: e2005752.
  60. Ferguson J, Campos-Leon K, Pe ntland I, Stockton JD, Cunther T, Beggs AD, et al. 2021. The chromatin insulator CTCF regulates HPV18 transcript splicing and differentiation-dependent late gene expression. PLoS Pathog. 17: e1010032.
  61. McBride AA, A Warburton. 2017. The role of integration in oncogenic progression of HPV-associated cancers. PLoS Pathog. 13: e1006211.
  62. Ojesina AI, Lichetnstein L, Freeman SS, Pedamallu CS, Imaz-Rosshandler I, Pugh TJ, et al. 2014. Landscape of genomic alterations in cervical carcinomas. Nature 506: 371-375. https://doi.org/10.1038/nature12881
  63. Dixon JR, Xu J, Dileep V, Zhan Y, Song F, Le VT, et al. 2018. Integrative detection and analysis of structural variation in cancer genomes. Nat. Genet. 50: 1388-1398. https://doi.org/10.1038/s41588-018-0195-8
  64. Shen C, Liu Y, Shi S, Zhang R, Zhang T, Xu Q, et al. 2017. Long-distance interaction of the integrated HPV fragment with MYC gene and 8q24.22 region upregulating the allele-specific MYC expression in HeLa cells. Int. J. Cancer 141: 540-548. https://doi.org/10.1002/ijc.30763
  65. Bodelon C, Untereiner ME, Machiela MJ, Vinokurova, Wentzensen N. 2016. Genomic characterization of viral integration sites in HPV-related cancers. Int. J. Cancer 139: 2001-2011. https://doi.org/10.1002/ijc.30243
  66. Kelley DZ, Flam EL, Izumchenko E, Danilova LV, Wulf HA, Guo T, et al. 2017. Integrated analysis of whole-genome ChIP-Seq and RNA-Seq data of primary head and neck tumor samples associates HPV integration sites with open chromatin marks. Cancer Res. 77: 6538-6550. https://doi.org/10.1158/0008-5472.CAN-17-0833
  67. Hu Z, Zhu D, Wang W, Li W, Jia W, Zeng X, et al. 2015. Genome-wide profiling of HPV integration in cervical cancer identifies clustered genomic hot spots and a potential microhomology-mediated integration mechanism. Nat. Genet. 47: 158-163. https://doi.org/10.1038/ng.3178
  68. Warburton A, Markowitz TE, Katz JP, Pipas JM, McBride A. 2021. Recurrent integration of human papillomavirus genomes at transcriptional regulatory hubs. NPJ Genom. Med. 6: 101.
  69. Warburton A, Redmond CJ, Dooley KE, Fu H, Gillson ML, Akagi K, et al. 2018. HPV integration hijacks and multimerizes a cellular enhancer to generate a viral-cellular super-enhancer that drives high viral oncogene expression. PLoS Genet. 14: e1007179.
  70. Zhou L, Qiu Q, Zhou Q, Li J, Yu M, Li K, et al. 2022. Long-read sequencing unveils high-resolution HPV integration and its oncogenic progression in cervical cancer. Nat. Commun. 13: 2563.
  71. Turner KM, Deshpande V, Beyter D, Koga T, Risert J, Lee C, et al. 2017. Extrachromosomal oncogene amplification drives tumour evolution and genetic heterogeneity. Nature 543: 122-125. https://doi.org/10.1038/nature21356
  72. Adeel MM, Jiang H, Arega Y, Cao K, Lin D, Cao C, et al. 2021. Structural variations of the 3D genome architecture in cervical cancer development. Front. Cell Dev. Biol. 9: 706375.
  73. Mehran Karimzadeh, Christopher Arlidge, Ariana Rostami, Mathieu Lupien, Scott V. Bratman, Michael M. Hoffman. 2022. Human papillomavirus integration transforms chromatin to drive oncogenesis. https://doi.org/10.1101/2020.02.12.942755.
  74. Lusic M, RF Siliciano. 2017. Nuclear landscape of HIV-1 infection and integration. Nat. Rev. Microbiol. 15: 69-82. https://doi.org/10.1038/nrmicro.2016.162
  75. Marini B, Kertesz-Farkas A, Ali H, Lucic B, Lisek K, Manganaro L, et al. 2015. Nuclear architecture dictates HIV-1 integration site selection. Nature 521: 227-231. https://doi.org/10.1038/nature14226
  76. Chen H-C, Martinez JP, Zorita E, Meyerhans A, Filion GJ. 2017. Position effects influence HIV latency reversal. Nat. Struct. Mol. Biol. 24: 47-54. https://doi.org/10.1038/nsmb.3328
  77. Vansant G, Chen H-C, Zorita E, Trejbalova K, Millik D, Filion G, et al. 2020. The chromatin landscape at the HIV-1 provirus integration site determines viral expression. Nucleic Acids Res. 48: 7801-7817. https://doi.org/10.1093/nar/gkaa536
  78. Perkins KJ, Lusic M, Mitar I, Giacca M, Proudfoot NJ. 2008. Transcription-dependent gene looping of the HIV-1 provirus is dictated by recognition of pre-mRNA processing signals. Mol. Cell 29: 56-68. https://doi.org/10.1016/j.molcel.2007.11.030
  79. Dieudonne M, Maiuri P, Biancotto C, Knezevich A, Kula A, Lusic M, et al. 2009. Transcriptional competence of the integrated HIV1 provirus at the nuclear periphery. EMBO J. 28: 2231-2243. https://doi.org/10.1038/emboj.2009.141
  80. Lucic B, Chen H-C, Kuzman M, Zorita E, Wegner J, Minneker V, et al. 2019. Spatially clustered loci with multiple enhancers are frequent targets of HIV-1 integration. Nat. Commun. 10: 4059.
  81. Rheinberger M, Costa AL, Kampmann M, Glavas D, Shytaj LL, Penzo C, et al. 2022. Genomic profiling of HIV-1 integration in microglia links viral insertions to TAD organization. bioRxiv doi: https://doi.org/10.1101/2022.02.14.480322.
  82. Ruess H, Lee J, Guzman C, Malladi V, D'Orso I. 2020. An integrated genomics approach towards deciphering human genome codes shaping HIV-1 proviral transcription and fate. bioRxiv doi: https://doi.org/10.1101/2020.05.01.072231.
  83. Heinz S, Texari L, Hayes MCB, Urbanowski M, Chang MW, Givarkes N, et al. 2018. Transcription elongation can affect genome 3D structure. Cell 174: 1522-1536.e22. https://doi.org/10.1016/j.cell.2018.07.047
  84. Shiimori M, Ichida Y, Nukiwa R, Sakuma T, Abe H, Kajitani R, et al. 2021. Suv4-20h2 protects against influenza virus infection by suppression of chromatin loop formation. iScience 24: 102660.
  85. Shiimori M, Nukiwa R, Imai Y. 2021. Dynamics of the host chromatin three-dimensional response to influenza virus infection. Int. Immunol. 33: 541-545. https://doi.org/10.1093/intimm/dxab043
  86. Chen T, Lin Y-X, Zha Y, Sun Y, Tian J, Yang Z, et al. 2021. A low-producing haplotype of interleukin-6 disrupting CTCF binding is protective against severe COVID-19. mBio 12: e0137221.
  87. Nakanishi T, Pigaxxini S, Degebhardt F, Cordi, Butler-Laporte G, Maya-Miles D, et al. 2021. Age-dependent impact of the major common genetic risk factor for COVID-19 on severity and mortality. J. Clin. Invest. 131: e152386.
  88. Stikker BS, Stik G, Ouwerkerk AFV, Trap L, Spicuglia S, Hendriks RW, et al. 2022. Severe COVID-19-associated variants linked to chemokine receptor gene control in monocytes and macrophages. Genome Biol. 23: 96.
  89. Merad M, Martin JC. 2020. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat. Rev. Immunol. 20: 355-362. https://doi.org/10.1038/s41577-020-0331-4
  90. Szabo PA, Dogra P, Gray JI, Wells SB, Connors TJ, Weisberg SP, et al. 2021. Longitudinal profiling of respiratory and systemic immune responses reveals myeloid cell-driven lung inflammation in severe COVID-19. Immunity 54: 797-814.e6. https://doi.org/10.1016/j.immuni.2021.03.005
  91. Salgado-Albarran M, Navarro-Delgado EI, Moral-Morales AD, Alcaraz N, Baumbach J, Gonzalez-Barrios R, et al. 2021. Comparative transcriptome analysis reveals key epigenetic targets in SARS-CoV-2 infection. NPJ Syst. Biol. Appl. 7: 21.
  92. Huoman J, sayyab S, Apostolou E, Karlsson L. Procile L. Rizwan M, et al. 2021. Epigenome-wide DNA methylation profiling of healthy COVID-19 recoverees reveals a unique signature in circulating immune cells. MedRXiv doi: https://doi.org/10.1101/ 2021.07.05.21260014.
  93. Wang R, Lee J-H, Xiong F, Kim J, Hasani LA, Yuan X, et al. 2021. SARS-CoV-2 Restructures the host chromatin architecture. bioRxiv doi: 10.1101/2021.07.20.453146.
  94. Merkenschlager M, Nora EP. 2016. CTCF and cohesin in genome folding and transcriptional gene regulation. Annu. Rev. Genomics Hum. Genet. 17: 17-43. https://doi.org/10.1146/annurev-genom-083115-022339
  95. Yuen, K.C. and J.L. Gerton, 2018. Taking cohesin and condensin in context. PLoS Genet. 14: e1007118.
  96. Bjornevik K, Cortese M, Healy BC, Kuhle J, Mina MJ, Leng Y, et al. 2022. Longitudinal analysis reveals high prevalence of EpsteinBarr virus associated with multiple sclerosis. Science 375: 296-301. https://doi.org/10.1126/science.abj8222
  97. Itzhaki RF. 2022. Does antiherpetic antiviral therapy reduce the risk of dementia? Nat. Rev. Neurol. 18: 63-64. https://doi.org/10.1038/s41582-021-00596-4
  98. Young-Xu Y, Powell EI, Zwain GM, Yazdi MT, Gui J, Shiner B. 2021. Symptomatic herpes simplex virus infection and risk of dementia in US veterans: a cohort study. Neurotherapeutics 18: 2458-2467. https://doi.org/10.1007/s13311-021-01084-9
  99. Ma H, Naseri A, Reyes-Gutierrez P, Wolfe S, Zhang S, Pederson T. 2015. Multicolor CRISPR labeling of chromosomal loci in human cells. Proc. Natl. Acad. Sci. USA 112: 3002-3007. https://doi.org/10.1073/pnas.1420024112
  100. Chen B, Gillbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li G-W, et al. 2013. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155: 1479-1491. https://doi.org/10.1016/j.cell.2013.12.001
  101. Washington SD, Edenfield SI, Lieux C, Watson ZL, Taasan SM, Dhummakupt A, et al. 2018. Depletion of the insulator protein CTCF results in herpes simplex virus 1 reactivation. J. Virol. 92: e00173-18.
  102. Lupey-Green LN, Moquin SA, Martin KA, McDevitt SM, Hulse M, Caruso LB, et al. 2017. PARP1 restricts Epstein Barr Virus lytic reactivation by binding the BZLF1 promoter. Virology 507: 220-230. https://doi.org/10.1016/j.virol.2017.04.006
  103. Kang H, Wiedmer A, Yuan Y, Robertson E, Lieberman PM. 2011. Coordination of KSHV latent and lytic gene control by CTCFcohesin mediated chromosome conformation. PLoS Pathog. 7: e1002140.
  104. Jefferys SR, Burgos SD, Peterson JJ, Selitsky SR, Turner AMW, James LI, et al. 2021. Epigenomic characterization of latent HIV infection identifies latency regulating transcription factors. PLoS Pathog. 17: e1009346.
  105. D'Arienzo V, Ferguson J, Giraud G, ChapusF, Harris JM, Wing PAC, et al. 2021. The CCCTC-binding factor CTCF represses hepatitis B virus enhancer I and regulates viral transcription. Cell. Microbiol. 23: e13274.
  106. Decorsiere A, Mueller H, van Breugel PC, Abdul F, Gerossier L, Beran RK, et al. 2016. Hepatitis B virus X protein identifies the Smc5/6 complex as a host restriction factor. Nature 531: 386-389. https://doi.org/10.1038/nature17170
  107. Komatsu T, Sekiya T, Nagata K. 2013. DNA replication-dependent binding of CTCF plays a critical role in adenovirus genome functions. Sci. Rep. 3: 2187.