DOI QR코드

DOI QR Code

Panax ginseng: Inflammation, platelet aggregation, thrombus formation, and atherosclerosis crosstalk

  • Lee, Yuan Yee (Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University) ;
  • Kim, Sung Dae (Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University) ;
  • Park, Seung-Chun (Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University) ;
  • Rhee, Man Hee (Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University)
  • Received : 2021.07.20
  • Accepted : 2021.09.08
  • Published : 2022.01.01

Abstract

Ginseng has been widely studied due to its various therapeutic properties on various diseases such as cardiovascular disease (CVD). Cardiovascular disease has been canonically known to be caused by high levels of low-density lipoproteins (LDL) in the bloodstream, in addition to the impaired vasodilatory effects of cholesterol. However, current research on CVD has revealed a cascade of mechanisms involving a series of events that contribute to the progression of CVD. Although this has been elucidated and summarized in previous studies the detailed correlation between platelet aggregation and innate immunity that plays an important role in CVD progression has not been thoroughly summarized. Furthermore, immune cell subtypes also contribute to the progression of plaque formation in the subendothelial layer. Thrombus formation and the coagulation cascade also have a vital role in the progression of atherosclerosis. Hence, in this mini review we aim to elucidate, summarize, and propose the potent therapeutic effect of ginseng on CVD, mainly on platelet aggregation, plaque formation, and thrombus formation.

Keywords

Acknowledgement

The study was supported by The Korean Society of Ginseng (2020). The illustrations in this study were created with BioRender.com.

References

  1. Chen M, Kakutani M, Naruko T, Ueda M, Narumiya S, Masaki T, et al. Activation-dependent surface expression of LOX-1 in human platelets. Biochem Biophys Res Commun 2001;282(1):153-8. https://doi.org/10.1006/bbrc.2001.4516
  2. Chen K, Febbraio M, Li W, Silverstein RL. A specific CD36-dependent signaling pathway is required for platelet activation by oxidized low-density lipoprotein. Circ Res 2008;102(12):1512-9. https://doi.org/10.1161/CIRCRESAHA.108.172064
  3. Steinberg D. A critical look at the evidence for the oxidation of LDL in atherogenesis. Atherosclerosis 1997;131:S5-7. https://doi.org/10.1016/S0021-9150(97)06115-7
  4. McEver RP. Adhesive interactions of leukocytes, platelets, and the vessel wall during hemostasis and inflammation. Thromb Haemostasis 2001;86(3):746-56. https://doi.org/10.1055/s-0037-1616128
  5. Singh RK, Haka AS, Asmal A, Barbosa-Lorenzi VC, Grosheva I, Chin HF, et al. TLR4 (toll-like receptor 4)-dependent signaling drives extracellular catabolism of LDL (low-density lipoprotein) aggregates. Arterioscler Thromb Vasc Biol 2020;40(1):86-102. https://doi.org/10.1161/ATVBAHA.119.313200
  6. Howell KW, Meng X, Fullerton DA, Jin C, Reece TB, Cleveland Jr JC. Toll-like receptor 4 mediates oxidized LDL-induced macrophage differentiation to foam cells. J Surg Res 2011;171(1):e27-31.
  7. de Gaetano M, Crean D, Barry M, Belton O. M1-and M2-type macrophage responses are predictive of adverse outcomes in human atherosclerosis. Front Immunol 2016;7:275.
  8. Khallou-Laschet J, Varthaman A, Fornasa G, Compain C, Gaston A-T, Clement M, et al. Macrophage plasticity in experimental atherosclerosis. PLoS One 2010;5(1):e8852. https://doi.org/10.1371/journal.pone.0008852
  9. Liu Y, Wang X, Pang J, Zhang H, Luo J, Qian X, et al. Attenuation of atherosclerosis by protocatechuic acid via inhibition of M1 and promotion of M2 macrophage polarization. J Agric Food Chem 2019;67(3):807-18. https://doi.org/10.1021/acs.jafc.8b05719
  10. Nassar T, Sachais BS, Akkawi Se, Kowalska MA, Bdeir K, Leitersdorf E, et al. Platelet factor 4 enhances the binding of oxidized low-density lipoprotein to vascular wall cells. J Biol Chem 2003;278(8):6187-93. https://doi.org/10.1074/jbc.M208894200
  11. Sachais BS, Kuo A, Nassar T, Morgan J, Kariko K, Williams KJ, et al. Platelet factor 4 binds to low-density lipoprotein receptors and disrupts the endocytic itinerary, resulting in retention of low-density lipoprotein on the cell surface. Blood 2002;99(10):3613-22. https://doi.org/10.1182/blood.V99.10.3613
  12. Bobryshev YV. Monocyte recruitment and foam cell formation in atherosclerosis. Micron 2006;37(3):208-22. https://doi.org/10.1016/j.micron.2005.10.007
  13. Weber C, Fraemohs L, Dejana E. The role of junctional adhesion molecules in vascular inflammation. Nat Rev Immunol 2007;7(6):467-77. https://doi.org/10.1038/nri2096
  14. Stewart M, Thiel M, Hogg N. Leukocyte integrins. Curr Opin Cell Biol 1995;7(5):690-6. https://doi.org/10.1016/0955-0674(95)80111-1
  15. Tabas I. Macrophage death and defective inflammation resolution in atherosclerosis. Nat Rev Immunol 2010;10(1):36-46. https://doi.org/10.1038/nri2675
  16. Shimada K. Immune system and atherosclerotic disease heterogeneity of leukocyte subsets participating in the pathogenesis of atherosclerosis. Circ J 2009;73(6):994-1001. https://doi.org/10.1253/circj.CJ-09-0277
  17. Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 2009;27:451-83. https://doi.org/10.1146/annurev.immunol.021908.132532
  18. Yilmaz A, Weber J, Cicha I, Stumpf C, Klein M, Raithel D, et al. Decrease in circulating myeloid dendritic cell precursors in coronary artery disease. J Am Coll Cardiol 2006;48(1):70-80. https://doi.org/10.1016/j.jacc.2006.01.078
  19. Bobryshev YV, Lord RS, Rainer SP, Munro VF. VCAM-1 expression and network of VCAM-1 positive vascular dendritic cells in advanced atherosclerotic lesions of carotid arteries and aortas. Acta Histochem 1996;98(2):185-94. https://doi.org/10.1016/S0065-1281(96)80037-7
  20. Alvarez D, Vollmann EH, von Andrian UH. Mechanisms and consequences of dendritic cell migration. Immunity 2008;29(3):325-42. https://doi.org/10.1016/j.immuni.2008.08.006
  21. Charo IF, Taubman MB. Chemokines in the pathogenesis of vascular disease. Circ Res 2004;95(9):858-66. https://doi.org/10.1161/01.RES.0000146672.10582.17
  22. Langer HF, Daub K, Braun G, Schonberger T, May AE, Schaller M, et al. Platelets recruit human dendritic cells via Mac-1/JAM-C interaction and modulate dendritic cell function in vitro. Arterioscler Thromb Vasc Biol 2007;27(6):1463-70. https://doi.org/10.1161/ATVBAHA.107.141515
  23. Zhang X, Niessner A, Nakajima T, Ma-Krupa W, Kopecky SL, Frye RL, et al. Interleukin 12 induces T-cell recruitment into the atherosclerotic plaque. Circ Res 2006;98(4):524-31. https://doi.org/10.1161/01.RES.0000204452.46568.57
  24. Niessner A, Weyand CM. Dendritic cells in atherosclerotic disease. Clin Immunol 2010;134(1):25-32. https://doi.org/10.1016/j.clim.2009.05.006
  25. Zhang X, Xie Y, Zhou H, Xu Y, Liu J, Xie H, et al. Involvement of TLR4 in oxidized LDL/b2GPI/Anti-b2GPI-induced transformation of macrophages to foam cells. J Atherosclerosis Thromb 2014;21(11):1140-51. https://doi.org/10.5551/jat.24372
  26. Webb NR, Moore KJ. Macrophage-derived foam cells in atherosclerosis: lessons from murine models and implications for therapy. Curr Drug Targets 2007;8(12):1249-63. https://doi.org/10.2174/138945007783220597
  27. Li AC, Glass CK. The macrophage foam cell as a target for therapeutic intervention. Nat Med 2002;8(11):1235-42. https://doi.org/10.1038/nm1102-1235
  28. Chinetti-Gbaguidi G, Staels B. Lipid ligand-activated transcription factors regulating lipid storage and release in human macrophages. Biochim Biophys Acta 2009;1791(6):486-93. https://doi.org/10.1016/j.bbalip.2009.01.009
  29. Libby P. Changing concepts of atherogenesis. J Intern Med 2000;247(3):349-58. https://doi.org/10.1046/j.1365-2796.2000.00654.x
  30. Newby AC. Matrix metalloproteinases regulate migration, proliferation, and death of vascular smooth muscle cells by degrading matrix and non-matrix substrates. Cardiovasc Res 2006;69(3):614-24. https://doi.org/10.1016/j.cardiores.2005.08.002
  31. Johnson JL. Metalloproteinases in atherosclerosis. Eur J Pharmacol 2017;816:93-106. https://doi.org/10.1016/j.ejphar.2017.09.007
  32. Niu C, Wang X, Zhao M, Cai T, Liu P, Li J, et al. Macrophage foam cell-derived extracellular vesicles promote vascular smooth muscle cell migration and adhesion. J Am Heart Assoc 2016;5(10):e004099. https://doi.org/10.1161/JAHA.116.004099
  33. Li W, Febbraio M, Reddy SP, Yu D-Y, Yamamoto M, Silverstein RL. CD36 participates in a signaling pathway that regulates ROS formation in murine VSMCs. J Clin Invest 2010;120(11):3996-4006. https://doi.org/10.1172/JCI42823
  34. Bennett MR, Sinha S, Owens GK. Vascular smooth muscle cells in atherosclerosis. Circ Res 2016;118(4):692-702. https://doi.org/10.1161/CIRCRESAHA.115.306361
  35. Suttles J, Miller RW, Moyer CF. T cell-vascular smooth muscle cell interactions: antigen-specific activation and cell cycle blockade of T helper clones by cloned vascular smooth muscle cells. Exp Cell Res 1995;218(1):331-8. https://doi.org/10.1006/excr.1995.1163
  36. Mach F, Schonbeck U, Sukhova GK, Bourcier T, Bonnefoy J-Y, Pober JS, et al. Functional CD40 ligand is expressed on human vascular endothelial cells, smooth muscle cells, and macrophages: implications for CD40-CD40 ligand signaling in atherosclerosis. Proc Natl Acad Sci Unit States Am 1997;94(5):1931-6. https://doi.org/10.1073/pnas.94.5.1931
  37. Newby AC, Zaltsman AB. Fibrous cap formation or destruction-the critical importance of vascular smooth muscle cell proliferation, migration and matrix formation. Cardiovasc Res 1999;41(2):345-60. https://doi.org/10.1016/S0008-6363(98)00286-7
  38. Stoneman VE, Bennett MR. Role of apoptosis in atherosclerosis and its therapeutic implications. Clin Sci (Lond.) 2004;107(4):343-54. https://doi.org/10.1042/CS20040086
  39. Jung SM, Moroi M, Soejima K, Nakagaki T, Miura Y, Berndt MC, et al. Constitutive dimerization of glycoprotein VI (GPVI) in resting platelets is essential for binding to collagen and activation in flowing blood. J Biol Chem 2012;287(35):30000-13. https://doi.org/10.1074/jbc.M112.359125
  40. Brass LF. Thrombin and platelet activation. Chest 2003;124(3 Suppl):18S-25S. https://doi.org/10.1378/chest.124.3_suppl.18S
  41. Du X, Plow EF, Frelinger III AL, O'Toole TE, Loftus JC, Ginsberg MH. Ligands "activate" integrin αIIbβ3 (platelet GPIIb-IIIa). Cell 1991;65(3):409-16. https://doi.org/10.1016/0092-8674(91)90458-b
  42. McCarty O, Zhao Y, Andrew N, Machesky L, Staunton D, Frampton J, et al. Evaluation of the role of platelet integrins in fibronectin-dependent spreading and adhesion. J Thromb Haemostasis 2004;2(10):1823-33. https://doi.org/10.1111/j.1538-7836.2004.00925.x
  43. Furie B, Furie BC. The molecular basis of platelet and endothelial cell interaction with neutrophils and monocytes: role of P-selectin and the P-selectin ligand, PSGL-1. Thromb Haemostasis 1995;74(1):224-7. https://doi.org/10.1055/s-0038-1642681
  44. Mause SF, von Hundelshausen P, Zernecke A, Koenen RR, Weber C. Platelet microparticles: a transcellular delivery system for RANTES promoting monocyte recruitment on endothelium. Arterioscler Thromb Vasc Biol 2005;25(7):1512-8. https://doi.org/10.1161/01.ATV.0000170133.43608.37
  45. Schober A, Manka D, Von Hundelshausen P, Huo Y, Hanrath P, Sarembock IJ, et al. Deposition of platelet RANTES triggering monocyte recruitment requires P-selectin and is involved in neointima formation after arterial injury. Circulation 2002;106(12):1523-9. https://doi.org/10.1161/01.CIR.0000028590.02477.6F
  46. Barnard MR, Linden MD, Frelinger III AL, Li Y, Fox ML, Furman MI, et al. Effects of platelet binding on whole blood flow cytometry assays of monocyte and neutrophil procoagulant activity. J Thromb Haemostasis 2005;3(11):2563-70. https://doi.org/10.1111/j.1538-7836.2005.01603.x
  47. Seizer P, Gawaz M, May AE. Platelet-monocyte interactions-a dangerous liaison linking thrombosis, inflammation and atherosclerosis. Curr Med Chem 2008;15(20):1976-80. https://doi.org/10.2174/092986708785132852
  48. Massberg S, Grahl L, von Bruehl M-L, Manukyan D, Pfeiler S, Goosmann C, et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med 2010;16(8):887-96. https://doi.org/10.1038/nm.2184
  49. Merhi Y, Guidoin R, Provost P, Leung T-K, Lam JY. Increase of neutrophil adhesion and vasoconstriction with platelet deposition after deep arterial injury by angioplasty. Am Heart J 1995;129(3):445-51. https://doi.org/10.1016/0002-8703(95)90266-X
  50. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation 2002;105(9):1135-43. https://doi.org/10.1161/hc0902.104353
  51. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 2017;377(12):1119-31. https://doi.org/10.1056/NEJMoa1707914
  52. Pircher J, Engelmann B, Massberg S, Schulz C. Plateleteneutrophil crosstalk in atherothrombosis. Thromb Haemostasis 2019;119(8):1274-82. https://doi.org/10.1055/s-0039-1692983
  53. Schwartz RS, Burke A, Farb A, Kaye D, Lesser JR, Henry TD, et al. Microemboli and microvascular obstruction in acute coronary thrombosis and sudden coronary death: relation to epicardial plaque histopathology. J Am Coll Cardiol 2009;54(23):2167-73. https://doi.org/10.1016/j.jacc.2009.07.042
  54. Lievens D, von Hundelshausen P. Platelets in atherosclerosis. Thromb Haemostasis 2011;106(5):827-38. https://doi.org/10.1160/TH11-08-0592
  55. Winckers K, ten Cate H, Hackeng TM. The role of tissue factor pathway inhibitor in atherosclerosis and arterial thrombosis. Blood Rev 2013;27(3):119-32. https://doi.org/10.1016/j.blre.2013.03.001
  56. Gao H, Kang N, Hu C, Zhang Z, Xu Q, Liu Y, et al. Ginsenoside Rb1 exerts anti-inflammatory effects in vitro and in vivo by modulating toll-like receptor 4 dimerization and NF-kB/MAPKs signaling pathways. Phytomedicine 2020;69:153197. https://doi.org/10.1016/j.phymed.2020.153197
  57. Lee YY, Saba E, Irfan M, Kim M, Yi-Le Chan J, Jeon BS, et al. The anti-inflammatory and anti-nociceptive effects of Korean black ginseng. Phytomedicine 2019;54:169-81. https://doi.org/10.1016/j.phymed.2018.09.186
  58. Saba E, Jeong D, Irfan M, Lee YY, Park S-J, Park C-K, et al. Anti-inflammatory activity of Rg3-enriched Korean red ginseng extract in murine model of sepsis. Evid Based Complement Alternat Med 2018;2018:6874692.
  59. Qin M, Luo Y, Lu S, Sun J, Yang K, Sun G, et al. Ginsenoside F1 ameliorates endothelial cell inflammatory injury and prevents atherosclerosis in mice through A20-mediated suppression of NF-kB signaling. Front Pharmacol 2017;8:953. https://doi.org/10.3389/fphar.2017.00953
  60. Wang N, Wan J-B, Chan S-W, Deng Y-H, Yu N, Zhang Q-W, et al. Comparative study on saponin fractions from Panax notoginseng inhibiting inflammation-induced endothelial adhesion molecule expression and monocyte adhesion. Chin Med 2011;6:37. https://doi.org/10.1186/1749-8546-6-37
  61. Park J-B, Kwon SK, Nagar H, Jung S-b, Jeon BH, Kim CS, et al. Rg3-enriched Korean Red Ginseng improves vascular function in spontaneously hypertensive rats. J Ginseng Res 2014;38(4):244-50. https://doi.org/10.1016/j.jgr.2014.05.011
  62. Cho I-H, Kang B-W, Yun-Jae P, Lee H-J, Park S, Lee N. Ginseng berry extract increases nitric oxide level in vascular endothelial cells and improves cGMP expression and blood circulation in muscle cells. J Exerc Nutrition Biochem 2018;22(3):6-13. https://doi.org/10.20463/jenb.2018.0018
  63. Zhou P, Xie W, Luo Y, Lu S, Dai Z, Wang R, et al. Inhibitory effects of ginsenoside Rb1 on early atherosclerosis in ApoE-/-mice via inhibition of apoptosis and enhancing autophagy. Molecules 2018;23(11):2912. https://doi.org/10.3390/molecules23112912
  64. Liu C, Feng R, Zou J, Xia F, Wan J-B. 20 (S)-protopanaxadiol saponins mainly contribute to the anti-atherogenic effects of Panax notoginseng in ApoE deficient mice. Molecules 2019;24(20):3723. https://doi.org/10.3390/molecules24203723
  65. Im D-S. Pro-Resolving Effect of ginsenosides as an anti-inflammatory mechanism of Panax ginseng. Biomolecules 2020;10(3):444. https://doi.org/10.3390/biom10030444
  66. Kang S, Park S-J, Lee A-Y, Huang J, Chung H-Y, Im D-S. Ginsenoside Rg3 promotes inflammation resolution through M2 macrophage polarization. J Ginseng Res 2018;42(1):68-74. https://doi.org/10.1016/j.jgr.2016.12.012
  67. Liu J-Q, Zhao M, Zhang Z, Cui L-Y, Zhou X, Zhang W, et al. Rg1 improves LPS-induced Parkinsonian symptoms in mice via inhibition of NF-kB signaling and modulation of M1/M2 polarization. Acta Pharmacol Sin 2020;41(4):523-34. https://doi.org/10.1038/s41401-020-0358-x
  68. Zhang X, Liu Mh, Qiao L, Zhang Xy, Liu Xl, Dong M, et al. Ginsenoside Rb1 enhances atherosclerotic plaque stability by skewing macrophages to the M2 phenotype. J Cell Mol Med 2018;22(1):409-16. https://doi.org/10.1111/jcmm.13329
  69. Guo M, Xiao J, Sheng X, Zhang X, Tie Y, Wang L, et al. Ginsenoside Rg3 mitigates atherosclerosis progression in diabetic apoE-/- mice by skewing macrophages to the M2 phenotype. Front Pharmacol 2018;9:464. https://doi.org/10.3389/fphar.2018.00464
  70. Lee SY. Anti-metastatic and anti-inflammatory effects of matrix metalloproteinase inhibition by ginsenosides. Biomedicines 2021;9(2):198. https://doi.org/10.3390/biomedicines9020198
  71. Lee H, Park D, Yoon M. Korean red ginseng (Panax ginseng) prevents obesity by inhibiting angiogenesis in high fat diet-induced obese C57BL/6J mice. Food Chem Toxicol 2013;53:402-8. https://doi.org/10.1016/j.fct.2012.11.052
  72. Shao B-z, Han B-z, Zeng Y-x, Su D-f, Liu C. The roles of macrophage autophagy in atherosclerosis. Acta Pharmacol Sin 2016;37(2):150-6. https://doi.org/10.1038/aps.2015.87
  73. Qomaladewi NP, Kim M-Y, Cho JY. Autophagy and its regulation by ginseng components. J Ginseng Res 2019;43(3):349-53. https://doi.org/10.1016/j.jgr.2018.12.011
  74. Kee J-Y, Jeon Y-D, Kim D-S, Han Y-H, Park J, Youn D-H, et al. Korean Red Ginseng improves atopic dermatitis-like skin lesions by suppressing expression of proinflammatory cytokines and chemokines in vivo and in vitro. J Ginseng Res 2017;41(2):134-43. https://doi.org/10.1016/j.jgr.2016.02.003
  75. Kim DY, Yang WM. Panax ginseng ameliorates airway inflammation in an ovalbumin-sensitized mouse allergic asthma model. J Ethnopharmacol 2011;136(1):230-5. https://doi.org/10.1016/j.jep.2011.04.048
  76. Kim M-H, Byon Y-Y, Ko E-J, Song J-Y, Yun Y-S, Shin T, et al. Immunomodulatory activity of ginsan, a polysaccharide of panax ginseng, on dendritic cells. KOREAN J PHYSIOL PHARMACOL 2009;13(3):169-73. https://doi.org/10.4196/kjpp.2009.13.3.169
  77. Irfan M, Kim M, Rhee MH. Anti-platelet role of Korean ginseng and ginsenosides in cardiovascular diseases. J Ginseng Res 2020;44(1):24-32. https://doi.org/10.1016/j.jgr.2019.05.005
  78. Luo B-Y, Jiang J-L, Fang Y-F, Yang F, Yin M-D, Zhang B-C, et al. The effects of ginsenosides on platelet aggregation and vascular intima in the treatment of cardiovascular diseases: from molecular mechanisms to clinical applications. Pharmacol Res 2020;159:105031. https://doi.org/10.1016/j.phrs.2020.105031
  79. Endale M, Lee WM, Kamruzzaman SM, Kim SD, Park JY, Park MH, et al. Ginsenoside-Rp1 inhibits platelet activation and thrombus formation via impaired glycoprotein VI signalling pathway, tyrosine phosphorylation and MAPK activation. Br J Pharmacol 2012;167(1):109-27. https://doi.org/10.1111/j.1476-5381.2012.01967.x
  80. Shin J-H, Kwon H-W, Irfan M, Rhee MH, Lee D-H. Ginsenoside Rk1 suppresses platelet mediated thrombus formation by downregulation of granule release and αIIbβ activation. J Ginseng Res 2021;45(4):490-7. https://doi.org/10.1016/j.jgr.2020.11.001
  81. Zhou Q, Jiang L, Xu C, Luo D, Zeng C, Liu P, et al. Ginsenoside Rg1 inhibits platelet activation and arterial thrombosis. Thromb Res 2014;133(1):57-65. https://doi.org/10.1016/j.thromres.2013.10.032
  82. Shin J-H, Kwon H-W, Lee D-H. Ginsenoside F4 inhibits platelet aggregation and thrombus formation by dephosphorylation of IP3RI and VASP. J Appl Biol Chem 2019;62(1):93-100. https://doi.org/10.3839/jabc.2019.014
  83. Jeong D, Irfan M, Kim S-D, Kim S, Oh J-H, Park C-K, et al. Ginsenoside Rg3-enriched red ginseng extract inhibits platelet activation and in vivo thrombus formation. J Ginseng Res 2017;41(4):548-55. https://doi.org/10.1016/j.jgr.2016.11.003
  84. Irfan M, Jeong D, Kwon H-W, Shin J-H, Park S-J, Kwak D, et al. GinsenosideRp3 inhibits platelet activation and thrombus formation by regulating MAPK and cyclic nucleotide signaling. Vasc Pharmacol 2018;109:45-55. https://doi.org/10.1016/j.vph.2018.06.002
  85. Son Y-M, Jeong D-H, Park H-J, Rhee M-H. The inhibitory activity of ginsenoside Rp4 in adenosine diphosphate-induced platelet aggregation. J Ginseng Res 2017;41(1):96-102. https://doi.org/10.1016/j.jgr.2016.01.003
  86. Irfan M, Jeong D, Saba E, Kwon H-W, Shin J-H, Jeon B-R, et al. Gintonin modulates platelet function and inhibits thrombus formation via impaired glycoprotein VI signaling. Platelets 2019;30(5):589-98. https://doi.org/10.1080/09537104.2018.1479033
  87. Xiong L, Qi Z, Zheng B, Li Z, Wang F, Liu J, et al. Inhibitory effect of triterpenoids from panax ginseng on coagulation factor X. Molecules 2017;22(4):649. https://doi.org/10.3390/molecules22040649
  88. Li C, Wang H, Xu B. A comparative study on anticoagulant activities of three Chinese herbal medicines from the genus Panax and anticoagulant activities of ginsenosides Rg1 and Rg2. Pharm Biol 2013;51(8):1077-80. https://doi.org/10.3109/13880209.2013.775164
  89. Kim MH, Lee J, Jung S, Kim JW, Shin J-H, Lee H-J. The involvement of ginseng berry extract in blood flow via regulation of blood coagulation in rats fed a high-fat diet. J Ginseng Res 2017;41(2):120-6. https://doi.org/10.1016/j.jgr.2016.01.004
  90. Lee A, Yun E, Chang W, Kim J. Ginsenoside Rg3 protects against iE-DAP-induced endothelial-to-mesenchymal transition by regulating the miR-139-5p-NF-κB axis. J Ginseng Res 2020;44(2):300-7. https://doi.org/10.1016/j.jgr.2019.01.003
  91. Irfan M, Kwak YS, Han CK, Rhee MH. Adaptogenic effects of Panax ginseng on modulation of cardiovascular functions. J Ginseng Res 2020;44(4):538-43. https://doi.org/10.1016/j.jgr.2020.03.001
  92. Jang YJ, Aravinthan A, Hossain MA, Kopalli SR, Kim B, Kim NS, et al. Effect of Korean Red Ginseng through comparative analysis of cardiac gene expression in db/db mice. J Ginseng Res 2021;45(3):450-5. https://doi.org/10.1016/j.jgr.2020.06.001
  93. Xue Q, He N, Wang Z, Fu X, Aung LHH, Liu Y, et al. Functional roles and mechanisms of ginsenosides from Panax ginseng in atherosclerosis. J Ginseng Res 2021;45(1):22-31. https://doi.org/10.1016/j.jgr.2020.07.002