DOI QR코드

DOI QR Code

COVID-19 and Panax ginseng: Targeting platelet aggregation, thrombosis and the coagulation pathway

  • Lee, Yuan Yee (Ginseng Circulatonic Laboratory, College of Veterinary Medicine, Kyungpook National University) ;
  • Quah, Yixian (Development and Reproductive Toxicology Research Group, Korea Institute of Toxicology) ;
  • Shin, Jung-Hae (Ginseng Circulatonic Laboratory, College of Veterinary Medicine, Kyungpook National University) ;
  • Kwon, Hyuk-Woo (Department of Biomedical Laboratory Science, Far East University) ;
  • Lee, Dong-Ha (Department of Biomedical Laboratory Science, Namseoul University) ;
  • Han, Jee Eun (College of Veterinary Medicine, Kyungpook National University) ;
  • Park, Jin-Kyu (College of Veterinary Medicine, Kyungpook National University) ;
  • Kim, Sung Dae (College of Veterinary Medicine, Kyungpook National University) ;
  • Kwak, Dongmi (College of Veterinary Medicine, Kyungpook National University) ;
  • Park, Seung-Chun (College of Veterinary Medicine, Kyungpook National University) ;
  • Rhee, Man Hee (Ginseng Circulatonic Laboratory, College of Veterinary Medicine, Kyungpook National University)
  • Received : 2022.01.05
  • Accepted : 2022.01.14
  • Published : 2022.03.01

Abstract

Coronavirus disease 2019 (COVID-19) not only targets the respiratory system but also triggers a cytokine storm and a series of complications, such as gastrointestinal problems, acute kidney injury, and myocardial ischemia. The use of natural products has been utilized to ease the symptoms of COVID-19, and in some cases, to strengthen the immune system against COVID-19. Natural products are readily available and have been regularly consumed for various health benefits. COVID-19 has been reported to be associated with the risk of thromboembolism and deep vein thrombosis. These thrombotic complications often affects mortality and morbidity. Panax ginseng, which has been widely consumed for its various health benefits has also been reported for its therapeutic effects against cardiovascular disease, thrombosis and platelet aggregation. In this review, we propose that P. ginseng can be consumed as a supplementation against the various associated complications of COVID-19, especially against thrombosis. We utilized the network pharmacology approach to validate the potential therapeutic properties of P. ginseng against COVID-19 mediated thrombosis, the coagulation pathway and platelet aggregation. Additionally, we aimed to investigate the roles of P. ginseng against COVID-19 with the involvement of platelet-leukocyte aggregates in relation to immunity-related responses in COVID-19.

Keywords

Acknowledgement

The illustrations in this study were created with BioRender.com.

References

  1. Hamming I, Timens W, Bulthuis M, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 2004;203(2):631-7. https://doi.org/10.1002/path.1570
  2. Gallagher PE, Ferrario CM, Tallant EA. Regulation of ACE2 in cardiac myocytes and fibroblasts. Am J Physiol Heart Circ Physiol 2008;295(6):H2373-9.
  3. Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, et al. The ACE2/angiotensin-(1-7)/MAS axis of the renin-angiotensin system: focus on angiotensin-(1-7). Physiol Rev 2018;98(1):503-53.
  4. Gupta A, Madhavan MV, Sehgal K, Nair N, Mahajan S, Sehrawat TS, et al. Extrapulmonary manifestations of COVID-19. Nat Med 2020;26(7):1017-32. https://doi.org/10.1038/s41591-020-0968-3
  5. Zhang S, Liu Y, Wang X, Yang L, Li H, Wang Y, et al. SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. J Hematol Oncol 2020;13(1):120. https://doi.org/10.1186/s13045-020-00954-7
  6. Manne BK, Denorme F, Middleton EA, Portier I, Rowley JW, Stubben C, et al. Platelet gene expression and function in patients with COVID-19. Blood 2020;136(11):1317-29. https://doi.org/10.1182/blood.2020007214
  7. Zaid Y, Puhm F, Allaeys I, Naya A, Oudghiri M, Khalki L, et al. Platelets can contain SARS-CoV-2 RNA and are hyperactivated in COVID-19. Circ Res 2020;127(11):1404-18. https://doi.org/10.1161/CIRCRESAHA.120.317703
  8. Shen B, Yi X, Sun Y, Bi X, Du J, Zhang C, et al. Proteomic and metabolomic characterization of COVID-19 patient sera. Cell 2020;182(1):59-72. https://doi.org/10.1016/j.cell.2020.05.032
  9. Wichmann D, Sperhake J-P, Lutgehetmann M, Steurer S, Edler C, Heinemann A, et al. Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study. Ann Intern Med 2020;173(4):268-77. https://doi.org/10.7326/m20-2003
  10. Vulliamy P, Jacob S, Davenport RA. Acute aorto-iliac and mesenteric arterial thromboses as presenting features of COVID-19. Br J Haematol 2020;189(6):1053-4. https://doi.org/10.1111/bjh.16760
  11. Xu X, Chang X, Pan H, Su H, Huang B, Yang M, et al. Pathological changes of the spleen in ten patients with new coronavirus infection by minimally invasive autopsies. Chin J Pathol 2020;49(6):576-82.
  12. Klok F, Kruip M, Van der Meer N, Arbous M, Gommers D, Kant K, et al. Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: an updated analysis. Thromb Res 2020;191:148-50. https://doi.org/10.1016/j.thromres.2020.04.041
  13. Middeldorp S, Coppens M, van Haaps TF, Foppen M, Vlaar AP, Muller MC, et al. Incidence of venous thromboembolism in hospitalized patients with COVID-19. J Thromb Haemostasis 2020;18(8):1995-2002. https://doi.org/10.1111/jth.14888
  14. Peerschke EI, Yin W, Ghebrehiwet B. Complement activation on platelets: implications for vascular inflammation and thrombosis. Mol Immunol 2010;47(13):2170-5. https://doi.org/10.1016/j.molimm.2010.05.009
  15. Jackson SP, Darbousset R, Schoenwaelder SM. Thromboinflammation: challenges of therapeutically targeting coagulation and other host defense mechanisms. Blood 2019;133(9):906-18. https://doi.org/10.1182/blood-2018-11-882993
  16. Hanff TC, Mohareb AM, Giri J, Cohen JB, Chirinos JA. Thrombosis in COVID-19. Am J Hematol 2020;95(12):1578-89. https://doi.org/10.1002/ajh.25982
  17. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemostasis 2020;18(4):844-7. https://doi.org/10.1111/jth.14768
  18. Cipolloni L, Sessa F, Bertozzi G, Baldari B, Cantatore S, Testi R, et al. Preliminary post-mortem COVID-19 evidence of endothelial injury and factor VIII hyper-expression. Diagnostics 2020;10(8):575. https://doi.org/10.3390/diagnostics10080575
  19. Nuyttens BP, Thijs T, Deckmyn H, Broos K. Platelet adhesion to collagen. Thromb Res 2011;127:S26-9.
  20. van Gils JM, Zwaginga JJ, Hordijk PL. Molecular and functional interactions among monocytes, platelets, and endothelial cells and their relevance for cardiovascular diseases. J Leukoc Biol 2009;85(2):195-204. https://doi.org/10.1189/jlb.0708400
  21. Nicolai L, Gaertner F, Massberg S. Platelets in host defense: experimental and clinical insights. Trends Immunol 2019;40(10):922-38. https://doi.org/10.1016/j.it.2019.08.004
  22. Stocker TJ, Hellen I-A, Steffen M, Christian S. Small but mighty: platelets as central effectors of host defense. Thromb Haemostasis 2017;117(4):651-61. 0. https://doi.org/10.1160/th16-12-0921
  23. Newby AC, George SJ, Ismail Y, Johnson JL, Sala-Newby GB, Thomas AC. Vulnerable atherosclerotic plaque metalloproteinases and foam cell phenotypes. Thromb Haemostasis 2009;101(6):1006-11. 0. https://doi.org/10.1160/th08-07-0469
  24. Bobryshev YV. Monocyte recruitment and foam cell formation in atherosclerosis. Micron 2006;37(3):208-22. https://doi.org/10.1016/j.micron.2005.10.007
  25. Thim T, Hagensen M, Bentzon J, Falk E. From vulnerable plaque to atherothrombosis. J Intern Med 2008;263(5):506-16. https://doi.org/10.1111/j.1365-2796.2008.01947.x
  26. Longstaff C. Measuring fibrinolysis: from research to routine diagnostic assays. J Thromb Haemostasis 2018;16(4):652-62. https://doi.org/10.1111/jth.13957
  27. Wright FL, Vogler TO, Moore EE, Moore HB, Wohlauer MV, Urban S, et al. Fibrinolysis shutdown correlation with thromboembolic events in severe COVID-19 infection. J Am Coll Surg 2020;231(2):193-203. https://doi.org/10.1016/j.jamcollsurg.2020.05.007
  28. Medcalf RL, Keragala CB, Myles PS. Fibrinolysis and COVID-19: a plasmin paradox. J Thromb Haemostasis 2020;18(9):2118-22. https://doi.org/10.1111/jth.14960
  29. Ibanez C, Perdomo J, Calvo A, Ferrando C, Reverter J, Tassies D, et al. High D dimers and low global fibrinolysis coexist in COVID19 patients: what is going on in there? J Thromb Thrombolysis 2021;51(2):308-12. https://doi.org/10.1007/s11239-020-02226-0
  30. Schmitt FCF, Manolov V, Morgenstern J, Fleming T, Heitmeier S, Uhle F, et al. Acute fibrinolysis shutdown occurs early in septic shock and is associated with increased morbidity and mortality: results of an observational pilot study. Ann Intensive Care 2019;9(1):19. https://doi.org/10.1186/s13613-019-0499-6
  31. Olwal CO, Nganyewo NN, Tapela K, Djomkam Zune AL, Owoicho O, Bediako Y, et al. Parallels in sepsis and COVID-19 conditions: implications for managing severe COVID-19 patients. Front Immunol 2021;12:602848. https://doi.org/10.3389/fimmu.2021.602848
  32. Mokhtari T, Hassani F, Ghaffari N, Ebrahimi B, Yarahmadi A, Hassanzadeh G. COVID-19 and multiorgan failure: a narrative review on potential mechanisms. J Mol Histol 2020;51(6):613-28. https://doi.org/10.1007/s10735-020-09915-3
  33. Cerletti C, Tamburrelli C, Izzi B, Gianfagna F, De Gaetano G. Platelet-leukocyte interactions in thrombosis. Thromb Res 2012;129(3):263-6. https://doi.org/10.1016/j.thromres.2011.10.010
  34. Lishko VK, Podolnikova NP, Yakubenko VP, Yakovlev S, Medved L, Yadav SP, et al. Multiple binding sites in fibrinogen for integrin aMb2 (Mac-1). J Biol Chem 2004;279(43):44897-906. https://doi.org/10.1074/jbc.M408012200
  35. Wagner DD. P-selectin chases a butterfly. J Clin Invest 1995;95(5):1955-6. https://doi.org/10.1172/JCI117878
  36. Koupenova M, Clancy L, Corkrey HA, Freedman JE. Circulating platelets as mediators of immunity, inflammation, and thrombosis. Circ Res 2018;122(2):337-51. https://doi.org/10.1161/CIRCRESAHA.117.310795
  37. Hottz ED, Azevedo-Quintanilha IG, Palhinha L, Teixeira L, Barreto EA, Pao CR, et al. Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19. Blood 2020;136(11):1330-41. https://doi.org/10.1182/blood.2020007252
  38. Le Joncour A, Biard L, Vautier M, Bugaut H, Mekinian A, Maalouf G, et al. Neutrophil-platelet and monocyteeplatelet aggregates in COVID-19 patients. Thromb Haemostasis 2020;120(12):1733-5. https://doi.org/10.1055/s-0040-1718732
  39. Leppkes M, Knopf J, Naschberger E, Lindemann A, Singh J, Herrmann I, et al. Vascular occlusion by neutrophil extracellular traps in COVID-19. EBioMedicine 2020;58:102925. https://doi.org/10.1016/j.ebiom.2020.102925
  40. Falati S, Liu Q, Gross P, Merrill-Skoloff G, Chou J, Vandendries E, et al. Accumulation of tissue factor into developing thrombi in vivo is dependent upon microparticle P-selectin glycoprotein ligand 1 and platelet P-selectin. J Exp Med 2003;197(11):1585-98. https://doi.org/10.1084/jem.20021868
  41. Fuzimoto AD, Isidoro C. The antiviral and coronavirus-host protein pathways inhibiting properties of herbs and natural compounds-Additional weapons in the fight against the COVID-19 pandemic? J Tradit Complement Med 2020;10(4):405-19. https://doi.org/10.1016/j.jtcme.2020.05.003
  42. Singh NA, Kumar P, Kumar N. Spices and herbs: potential antiviral preventives and immunity boosters during COVID-19. Phytother Res 2021;35:2745-57. https://doi.org/10.1002/ptr.7019
  43. Panyod S, Ho C-T, Sheen L-Y. Dietary therapy and herbal medicine for COVID-19 prevention: a review and perspective. J Tradit Complement Med 2020;10(4):420-7. https://doi.org/10.1016/j.jtcme.2020.05.004
  44. Ang L, Lee HW, Kim A, Lee MS. Herbal medicine for the management of COVID-19 during the medical observation period: a review of guidelines. Integr Med Res 2020;9(3):100465. https://doi.org/10.1016/j.imr.2020.100465
  45. Shahzad F, Anderson D, Najafzadeh M. The antiviral, anti-inflammatory effects of natural medicinal herbs and mushrooms and SARS-CoV-2 infection. Nutrients 2020;12(9):2573. https://doi.org/10.3390/nu12092573
  46. Korkmaz H. Could sumac be effective on COVID-19 treatment? J Med Food 2021;24(6):563-8. https://doi.org/10.1089/jmf.2020.0104
  47. Gautam S, Gautam A, Chhetri S, Bhattarai U. Immunity against COVID-19: potential role of Ayush Kwath. J Ayurveda Integr Med 2022;13(1):100350. https://doi.org/10.1016/j.jaim.2020.08.003
  48. Smeda M, Chlopicki S. Endothelial barrier integrity in COVID-19-dependent hyperinflammation: does the protective facet of platelet function matter? Cardiovasc Res 2020;116(10):e118-21.
  49. Jeong D, Irfan M, Kim S-D, Kim S, Oh J-H, Park C-K, et al. Ginsenoside Rg3-enriched red ginseng extract inhibits platelet activation and in vivo thrombus formation. J Ginseng Res 2017;41(4):548-55. https://doi.org/10.1016/j.jgr.2016.11.003
  50. Irfan M, Jeong D, Kwon H-W, Shin J-H, Park S-J, Kwak D, et al. Ginsenoside-Rp3 inhibits platelet activation and thrombus formation by regulating MAPK and cyclic nucleotide signaling. Vasc Pharmacol 2018;109:45-55. https://doi.org/10.1016/j.vph.2018.06.002
  51. Irfan M, Jeong D, Saba E, Kwon H-W, Shin J-H, Jeon B-R, et al. Gintonin modulates platelet function and inhibits thrombus formation via impaired glycoprotein VI signaling. Platelets 2019;30(5):589-98. https://doi.org/10.1080/09537104.2018.1479033
  52. Barrett TJ, Cornwell M, Myndzar K, Rolling CC, Xia Y, Drenkova K, et al. Platelets amplify endotheliopathy in COVID-19. Sci Adv 2021;7(37):eabh2434. https://doi.org/10.1126/sciadv.abh2434
  53. Barrett TJ, Bilaloglu S, Cornwell M, Burgess HM, Virginio VW, Drenkova K, et al. Platelets contribute to disease severity in COVID-19. J Thromb Haemostasis 2021;19(12):3139-53. https://doi.org/10.1111/jth.15534
  54. Irfan M, Kim M, Rhee MH. Anti-platelet role of Korean ginseng and ginsenosides in cardiovascular diseases. J Ginseng Res 2020;44(1):24-32. https://doi.org/10.1016/j.jgr.2019.05.005
  55. Irfan M, Kwak Y-S, Han C-K, Hyun SH, Rhee MH. Adaptogenic effects of Panax ginseng on modulation of cardiovascular functions. J Ginseng Res 2020;44(4):538-43. https://doi.org/10.1016/j.jgr.2020.03.001
  56. Lee YY, Kim SD, Park S-C, Rhee MH. Panax ginseng: inflammation, platelet aggregation, thrombus formation, and atherosclerosis crosstalk. J Ginseng Res 2021. Article in Press.
  57. Shin J-H, Kwon H-W, Rhee MH, Park H-J. Inhibitory effects of total saponin Korean red ginseng on thromboxane A 2 production and P-selectin expression via suppressing mitogen-activated protein kinases. Biomed Sci Letters 2017;23:310-20. https://doi.org/10.15616/BSL.2017.23.4.310
  58. Kwon HW, Shin JH, Lee DH, Park HJ. Inhibitory effects of cytosolic Ca(2+) concentration by ginsenoside Ro are dependent on phosphorylation of IP3RI and dephosphorylation of ERK in human platelets. Evid Based Complement Alternat Med 2015;2015:764906.
  59. Cho I-H, Kang B-W, Yun-Jae P, Lee H-J, Park S, Lee N. Ginseng berry extract increases nitric oxide level in vascular endothelial cells and improves cGMP expression and blood circulation in muscle cells. J Exerc Nutrition Biochem 2018;22(3):6-13. https://doi.org/10.20463/jenb.2018.0018
  60. Zheng Y-Y, Ma Y-T, Zhang J-Y, Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol 2020;17(5):259-60. https://doi.org/10.1038/s41569-020-0360-5
  61. Lacour T, Semaan C, Genet T, Ivanes F. Insights for increased risk of failed fibrinolytic therapy and stent thrombosis associated with COVID-19 in ST-segment elevation myocardial infarction patients. Cathet Cardiovasc Interv 2021;97(2):E241-3.
  62. Son Y-M, Jeong D-H, Park H-J, Rhee M-H. The inhibitory activity of ginsenoside Rp4 in adenosine diphosphate-induced platelet aggregation. J Ginseng Res 2017;41(1):96-102. https://doi.org/10.1016/j.jgr.2016.01.003
  63. Shin J-H, Kwon H-W, Irfan M, Rhee MH, Lee D-H. Ginsenoside Rk1 suppresses platelet mediated thrombus formation by downregulation of granule release and αIIbβ3 activation. J Ginseng Res 2021;45(4):490-7. https://doi.org/10.1016/j.jgr.2020.11.001
  64. Jeon BR, Kim SJ, Hong SB, Park H-J, Cho JY, Rhee MH. The inhibitory mechanism of crude saponin fraction from Korean Red Ginseng in collagen-induced platelet aggregation. J Ginseng Res 2015;39(3):279-85. https://doi.org/10.1016/j.jgr.2015.02.001
  65. Endale M, Lee W, Kamruzzaman S, Kim S, Park J, Park M, et al. Ginsenoside-Rp1 inhibits platelet activation and thrombus formation via impaired glycoprotein VI signalling pathway, tyrosine phosphorylation and MAPK activation. Br J Pharmacol 2012;167(1):109-27. https://doi.org/10.1111/j.1476-5381.2012.01967.x
  66. Irfan M, Lee YY, Lee K-J, Kim SD, Rhee MH. Comparative antiplatelet and antithrombotic effects of red ginseng and fermented red ginseng extracts. J Ginseng Res 2021. Article in Press.
  67. Durrant TN, van den Bosch MT, Hers I. Integrin αIIbβ3 outside-in signaling. Blood 2017;130(14):1607-19. https://doi.org/10.1182/blood-2017-03-773614
  68. Shattil SJ, Kashiwagi H, Pampori N. Integrin signaling: the platelet paradigm. Blood 1998;91(8):2645-57. https://doi.org/10.1182/blood.v91.8.2645.2645_2645_2657
  69. Dhawan RT, Gopalan D, Howard L, Vicente A, Park M, Manalan K, et al. Beyond the clot: perfusion imaging of the pulmonary vasculature after COVID-19. Lancet Respir Med 2021;9(1):107-16. https://doi.org/10.1016/S2213-2600(20)30407-0
  70. Willyard C. Coronavirus blood-clot mystery intensifies. Nature 2020;581(7808):250. https://doi.org/10.1038/d41586-020-01403-8
  71. Price LC, McCabe C, Garfield B, Wort SJ. Thrombosis and COVID-19 pneumonia: the clot thickens. Eur Respir J 2020;56(1):2001608. https://doi.org/10.1183/13993003.01608-2020
  72. Al-Hakeim HK, Al-Hamami S, Maes M. Increased serum thromboxane A2 and prostacyclin but lower complement C3 and C4 levels in COVID-19: associations with chest CT-scan anomalies and lowered peripheral oxygen saturation. medRxiv; 2021. Article in Press.
  73. Conti P, Caraffa A, Gallenga C, Ross R, Kritas S, Frydas I, et al. IL-1 induces throboxane-A2 (TxA2) in COVID-19 causing inflammation and microthrombi: inhibitory effect of the IL-1 receptor antagonist (IL-1Ra). J Biol Regul Homeost Agents 2020;34(5):1623-7.
  74. Sangkuhl K, Shuldiner AR, Klein TE, Altman RB. Platelet aggregation pathway. Pharmacogenetics Genom 2011;21(8):516-21. https://doi.org/10.1097/FPC.0b013e3283406323
  75. Pelzl L, Singh A, Funk J, Witzemann A, Marini I, Zlamal J, et al. Antibody-mediated procoagulant platelet formation in COVID-19 is AKT dependent. J Thromb Haemost 2021.
  76. Basile MS, Cavalli E, McCubrey J, Hernandez-Bello J, Munoz-Valle JF, Fagone P, et al. The PI3K/Akt/mTOR pathway: a potential pharmacological target in COVID-19. Drug Discov Today 2021;S1359-6446(21):480-3.
  77. Abu-Eid R, Ward FJ. Targeting the PI3K/Akt/mTOR pathway: a therapeutic strategy in COVID-19 patients. Immunol Lett 2021;240:1-8. https://doi.org/10.1016/j.imlet.2021.09.005
  78. Kohl M, Wiese S, Warscheid B. Cytoscape: software for visualization and analysis of biological networks. Methods Mol Biol 2011;696:291-303. https://doi.org/10.1007/978-1-60761-987-1_18
  79. Doncheva NT, Morris JH, Gorodkin J, Jensen LJ. Cytoscape StringApp: network analysis and visualization of proteomics data. J Proteome Res 2019;18(2):623-32. https://doi.org/10.1021/acs.jproteome.8b00702
  80. Abu-Farha M, Al-Sabah S, Hammad MM, Hebbar P, Channanath AM, John SE, et al. Prognostic genetic markers for thrombosis in COVID-19 patients: a focused analysis on D-dimer, homocysteine and thromboembolism. Front Pharmacol 2020;11:587451. https://doi.org/10.3389/fphar.2020.587451
  81. Dong J-f, Moake JL, Nolasco L, Bernardo A, Arceneaux W, Shrimpton CN, et al. ADAMTS-13 rapidly cleaves newly secreted ultralarge von Willebrand factor multimers on the endothelial surface under flowing conditions. Blood 2002;100(12):4033-9. https://doi.org/10.1182/blood-2002-05-1401
  82. Chauhan AK, Kisucka J, Brill A, Walsh MT, Scheiflinger F, Wagner DD. ADAMTS13: a new link between thrombosis and inflammation. J Exp Med 2008;205(9):2065-74. https://doi.org/10.1084/jem.20080130
  83. Mulder R, Croles FN, Mulder AB, Huntington JA, Meijer K, Lukens MV. SERPINC 1 gene mutations in antithrombin deficiency. Br J Haematol 2017;178(2):279-85. https://doi.org/10.1111/bjh.14658
  84. Ru J, Li P, Wang J, Zhou W, Li B, Huang C, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminf 2014;6:13. https://doi.org/10.1186/1758-2946-6-13
  85. Liu Z, Guo F, Wang Y, Li C, Zhang X, Li H, et al. BATMAN-TCM: a bioinformatics analysis tool for molecular mechANism of traditional Chinese medicine. Sci Rep 2016;6:21146. https://doi.org/10.1038/srep21146
  86. Kim J, Lee KP, Kim M-R, Kim BS, Moon BS, Shin CH, et al. A network pharmacology approach to explore the potential role of Panax ginseng on exercise performance. Phys Act Nutr 2021;25(3):28-35. https://doi.org/10.20463/pan.2021.0018
  87. Liu X, Li Z, Liu S, Sun J, Chen Z, Jiang M, et al. Potential therapeutic effects of dipyridamole in the severely ill patients with COVID-19. Acta Pharm Sin B 2020;10(7):1205-15. https://doi.org/10.1016/j.apsb.2020.04.008
  88. Mohamed-Hussein AA, Aly KM, Ibrahim M-EA. Should aspirin be used for prophylaxis of COVID-19-induced coagulopathy? Med Hypotheses 2020;144:109975. https://doi.org/10.1016/j.mehy.2020.109975
  89. Meizlish ML, Goshua G, Liu Y, Fine R, Amin K, Chang E, et al. Intermediate-dose anticoagulation, aspirin, and in-hospital mortality in COVID-19: a propensity score-matched analysis. Am J Hematol 2021;96(4):471-9. https://doi.org/10.1002/ajh.26102
  90. Osborne TF, Veigulis ZP, Arreola DM, Mahajan SM, Roosli E, Curtin CM. Association of mortality and aspirin prescription for COVID-19 patients at the Veterans Health Administration. PLoS One 2021;16(2):e0246825. https://doi.org/10.1371/journal.pone.0246825
  91. Salah HM, Mehta JL. Meta-analysis of the effect of aspirin on mortality in COVID-19. Am J Cardiol 2021;142:158-9. https://doi.org/10.1016/j.amjcard.2020.12.073
  92. Moroni F, Baldetti L. COVID-19 and arterial thrombosis: a potentially fatal combination. Int J Cardiol 2021;322:286-90. https://doi.org/10.1016/j.ijcard.2020.10.046