DOI QR코드

DOI QR Code

상전이법 기반 평막 제조과정에서 부직포 영향 분석연구

Effect of Nonwoven Support During Fabrication of Flat Sheet Membranes via Phase Inversion Method

  • 김민재 (인천대학교 에너지화학공학과) ;
  • 김수빈 (인천대학교 에너지화학공학과) ;
  • 김수민 (인천대학교 에너지화학공학과) ;
  • 이호익 (한국생산기술연구원 융합기술연구소) ;
  • 김정 (인천대학교 에너지화학공학과)
  • Kim, Minjae (Energy and Chemical Engineering Department, Incheon National University) ;
  • Kim, Subin (Energy and Chemical Engineering Department, Incheon National University) ;
  • Kim, Sumin (Energy and Chemical Engineering Department, Incheon National University) ;
  • Lee, Hoik (Research Institute of Industrial Technology Convergence, Korea Institute of Industrial Technology) ;
  • Kim, Jeong F. (Energy and Chemical Engineering Department, Incheon National University)
  • 투고 : 2022.02.25
  • 심사 : 2022.04.18
  • 발행 : 2022.04.30

초록

본 연구에서는 용매로 침액되었을 시 전반적으로 더 균일한 상전이법 기반 평막 제조 시 주로 사용되는 부직포 지지체의 영향을 분석하였다. 도프용액의 점도가 낮을 경우 용액이 부직포층으로 쉽게 침투하여 불균일한 막이 형성되는 것을 확인하였으며, 이를 방지하기 위해 부직포층을 유기용매로 침액하는 기법을 도입하였다. 부직포층이 유기 분리막이 생성되는 것을 확인하였으며, 수투과 및 용매투과율도 향상하는 것을 알 수 있었다. 부직포 침액의 영향은 낮은 점도에서 확연하게 나타났으며, 고분자용액의 점도가 높은 경우 침액 여부에 관계없이 동일한 성능을 얻을 수 있었다.

In this work, the effect of nonwoven support during fabrication of flat sheet membranes via nonsolvent-induced phase separation, was investigated in detail. It was found that dope solutions with low viscosity tend to penetrate through the nonwoven support during phase inversion, resulting in nonhomogeneous membranes. A simple soaking treatment of nonwoven support prevented such unwanted dope penetration, and resulted in membranes with higher water and solvent permeance performance. The dope penetration through nonwoven was more prominent in solutions with low viscosity, and the nonwoven soaking treatment not effective in solutions with high viscosity.

키워드

참고문헌

  1. D. W. Kim, "Review on graphene oxide-based nano-filtration membrane", Membr. J., 29, 130-139 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.3.130
  2. G. Amy, N. Ghaffour, Z. Li, L. Francis, R. V. Linares, T. Missimer, and S. Lattemann, "Membrane-based seawater desalination: Present and future prospects", Desalination, 401, 16-21 (2017). https://doi.org/10.1016/j.desal.2016.10.002
  3. J. Y. Park, "Hybrid Water/Wastewater Treatment Process of Membrane and Photocatalyst", Membr. J., 28, 143-156 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.3.143
  4. T. H. Choi and H. B. Park, "Membrane and virus filter trends in the processes of biopharmaceutical production", Membr. J., 30, 9-20 (2020). https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.1.9
  5. S. Kim and R. Patel, "Nanocomposite water treatment membranes: Antifouling prospective", Membr. J., 30, 158-172 (2020). https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.3.158
  6. H. Y. Nguyen Thi, B. T. D. Nguyen, and J. F. Kim, "Sustainable fabrication of organic solvent nano-filtration membranes", Membranes, 11, 19 (2021).
  7. S. H. Kim, K. S. Im, J. H. Kim, H. C. Koh, and S. Y. Nam, "Preparation and characterization of nanofiltration membrane for recycling alcoholic organic solvent", Membr. J., 31, 228-240 (2021). https://doi.org/10.14579/MEMBRANE_JOURNAL.2021.31.3.228
  8. S. Lee and S. S. Kim, "Structural changes of PVDF membranes by phase separation control", Korean Chem. Eng. Res., 54, 57-63 (2016). https://doi.org/10.9713/kcer.2016.54.1.57
  9. D. Hou, H. Fan, Q. Jiang, J. Wang, and X. Zhang, "Preparation and characterization of PVDF flat-sheet membranes for direct contact membrane distillation", Sep. Purif. Technol., 135, 211-222 (2014). https://doi.org/10.1016/j.seppur.2014.08.023
  10. P. Aerts, I. Genne, R. Leysen, P. Jacobs, and I. Vankelecom, "The role of the nature of the casting substrate on the properties of membranes prepared via immersion precipitation", J. Membr. Sci., 283, 320-327 (2006). https://doi.org/10.1016/j.memsci.2006.06.039
  11. M. R. Bilad, E. Guillen-Burrieza, M. O. Mavukkandy, F. A. Al Marzooqi, and H.A. Arafat, "Shrinkage, defect and membrane distillation performance of composite PVDF membranes", Desalination, 376, 62-72 (2015). https://doi.org/10.1016/j.desal.2015.08.015
  12. K. Keune, J. J. Boon, R. Boitelle, and Y. Shimadzu, "Degradation of emerald green in oil paint and its contribution to the rapid change in colour of the Descente des vaches (1834-1835) painted by Theodore Rousseau", Stud. Conserv., 58, 199-210 (2013). https://doi.org/10.1179/2047058412Y.0000000063
  13. J. H. Kim, H. S. Park, and S. J. Lim, "Comparison Study on the Material Characteristics of Oil Paints (I)", J. Conserv. Sci., 33, 85-95 (2017). https://doi.org/10.12654/JCS.2017.33.2.03
  14. J. Han, D. Yang, S. Zhang, X. Liu, Z. Zhang, and X. Jian, "Effects of compatibility difference in the mixed solvent system on the performance of PPES hollow fiber UF membrane", J. Membr. Sci., 365, 311-318 (2010). https://doi.org/10.1016/j.memsci.2010.09.022
  15. F. Rahmawati, I. Fadillah, and M. Mudjijono, "Composite of nano-TiO2 with cellulose acetate membrane from nata de coco (Nano-TiO2/CA (NDC)) for methyl orange degradation", J. Mater. Environ. Sci, 8, 389-397 (2017).
  16. J. Fang, L. Zhang, D. Sutton, X. Wang, and T. Lin, "Needleless melt-electrospinning of polypropylene nanofibres", J. Nanomater., 2012 (2012).