DOI QR코드

DOI QR Code

소프트 로봇용 4D 프린팅 소재

4D Printing Materials for Soft Robots

  • 이선희 (동아대학교 패션디자인학과)
  • 투고 : 2022.11.17
  • 심사 : 2022.12.29
  • 발행 : 2022.12.31

초록

본 원고는 소프트 로봇용 4D 프린팅 소재와 어그제틱 구조체에 대한 연구 동향을 정리한 것이다. 먼저 4D 프린팅 소재의 형상 변화 거동을 형상 변화와 형상기억 소재, 이중, 삼중, 다중 형상기억 효과, 접힘과 굽힘, 표면지형별로 구분하여 알아보았다. 형상 변화와 형상기억 소재 등 열이나 수분의 자극에 가역적/비가역적 혹은 규칙적/불규칙적 형상 변형이 가능할 수 있다. 다음으로, 차원별 형상이동 유형에 따른 특성과 물성에 대해 알아본 바, 1차원에서 다차원으로의 형상이동을 1D-1D 팽창/수축, 1D-2D 접힘/굽힘, 1D-3D 접힘 (1D-to-3D folding)으로 구분할 수 있다. 2차원에서 형상이동은 2D-2D 굽힙, 2D3D 굽힘/접힘/꼬임/표면말림/표면지형변화/굽힘과 꼬임, 3차원에서 다차원으로의 형상이동은 3D-3D 굽힙과 3D-3D 선형/비선형 거동으로 구분할 수 있다. 마지막으로 4D 프린팅 메타구조체 중 힌지 구조체를 적용한 KinetiX는 단일단위 터셀레이션과 다중단위 터셀레이션으로 모델링할 수 있고, 평면 및 공간 변환이 용이하고, 컨포머블 헬멧에 적용할 수 있다. 키리가미 구조체를 기본으로 한 공압형 어그제틱 구조체는 역설계 기반 구조체로써 굽힘각도를 제어하는 알고리즘으로 설계할 수 있다. 설계 후 3D 프린팅하여 TPU 멤브레인으로 프로토 타입을 제조하였고, 압력을 낮추면서 원하는 3차원 형상으로 완성될 수 있음을 확인하였다. 온도나 습도 등의 외부자극요소에 따라 형상이나 물성을 변화할 수 있는 재료를 사용하여 변형가능한 3차원 구조체로 성형한 4D 프린팅 소재를 이용하여 상지, 하지, 손, 발 등 소프트 로봇의 외골격(exoskeleton) 소재에 적용할 수 있을 것이다. 즉 자세제어, 상황인식, 동작신호 생성 등 다양한 환경에 대응하여 착용자의 움직임에 고하중, 고기동성, 운동지속성을 지원하는 기능을 갖는 소프트 로봇용 4D 프린팅 소재는 헬스케어 웨어러블 의류 제품화 개발로의 용도 전개가 가능할 것이다. 특히 4D 프린팅 소프트 소재 및 공정개발 분야는 일상 생할 보조용이나 재활치료용 의류를 개발하기 위한 3D 프린팅 소재 및 공정의 원천 기술에 해당하므로 이와 관련한 연구의 기초 자료로서 활용되기를 기대한다.

This paper aims to investigate 4D printing materials for soft robots. 4D printing is a targeted evolution of the 3D printed structure in shape, property, and functionality. It is capable of self-assembly, multi-functionality, and self-repair. In addition, it is time-dependent, printer-independent, and predictable. The shape-shifting behaviors considered in 4D printing include folding, bending, twisting, linear or nonlinear expansion/contraction, surface curling, and generating surface topographical features. The shapes can shift from 1D to 1D, 1D to 2D, 2D to 2D, 1D to 3D, 2D to 3D, and 3D to 3D. In the 4D printing auxetic structure, the kinetiX is a cellular-based material design composed of rigid plates and elastic hinges. In pneumatic auxetics based on the kirigami structure, an inverse optimization method for designing and fabricating morphs three-dimensional shapes out of patterns laid out flat. When 4D printing material is molded into a deformable 3D structure, it can be applied to the exoskeleton material of soft robots such as upper and lower limbs, fingers, hands, toes, and feet. Research on 4D printing materials for soft robots is essential in developing smart clothing for healthcare in the textile and fashion industry.

키워드

과제정보

연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2021R1A4A1022059).

참고문헌

  1. Bakarich, S. E., Gorkin III, R., Panhuis, M. I. H., & Spinks, G. M. (2015). 4D printing with mechanically robust, thermally actuating hydrogels. Macromolecular Rapid Communications, 36(12), 1211-1217. doi:10.1002/marc.201500079
  2. Bertoldi, K., Vitelli, V., Christensen, J., & Van Hecke, M. (2017). Flexible mechanical metamaterials. Nature Reviews Materials, 2(11), 1-11. doi:10.1038/natrevmats.2017.66
  3. Chen, C. P., & Lakes, R. S. (1996). Micromechanical analysis of dynamic behavior of conventional and negative Poisson's ratio foams. 118(3), 285-288 doi:10.1115/1.2806807
  4. Choi, J. B., & Lakes, R. S. (1992). Non-linear properties of metallic cellular materials with a negative Poisson's ratio. Journal of Materials Science, 27(19), 5375-5381. doi:10.1007/BF02403846
  5. Choi, J. B., & Lakes, R. S. (1996). Fracture toughness of re-entrant foam materials with a negative Poisson's ratio - Experiment and analysis. International Journal of Fracture, 80(1), 73-83. doi:10.1007/BF00036481
  6. Dorsey, K. L., Roberts, S. F., Forman, J., & Ishii, H. (2022). Analysis of DefeXtiles - A 3D printed textile towards garments and accessories. Journal of Micromechanics and Microengineering, 32(3), 034005. doi:10.1088/1361-6439/ac4fad
  7. Eguchi, S., Okabe, C., Ohira, M., & Tanaka, H. (2022, April). Pneumatic Auxetics - Inverse design and 3D printing of auxetic pattern for pneumatic morphing. In CHI Conference on Human Factors in Computing Systems Extended Abstracts, pp. 1-7. doi:0.1145/3491101.3519801
  8. Ge, Q., Qi, H. J., & Dunn, M. L. (2013). Active materials by fourdimension printing. Applied Physics Letters, 103(13), 131901. doi:10.1063/1.4819837
  9. Ge, Q., Dunn, C. K., Qi, H. J., & Dunn, M. L. (2014). Active origami by 4D printing. Smart Materials and Structures, 23(9), 094007. doi:10.1088/0964-1726/23/9/094007
  10. Hager, M. D., Bode, S., Weber, C., & Schubert, U. S. (2015). Shape memory polymers - Past, present and future developments. Progress in Polymer Science, 49, 3-33. doi:10.1016/j.progpolymsci.2015.04.002
  11. Hao, Y., Zhang, S., Fang, B., Sun, F., Liu, H., & Li, H. (2022). A review of smart materials for the boost of soft actuators, soft sensors, and robotics applications. Chinese Journal of Mechanical Engineering, 35(1), 1-16. doi:10.1186/s10033-022-00707-2
  12. Jamal, M., Kadam, S. S., Xiao, R., Jivan, F., Onn, T. M., Fernandes, R., ... & Gracias, D. H. (2013). Bio?origami hydrogel scaffolds composed of photocrosslinked PEG bilayers. Advanced Healthcare Materials, 2(8), 1142-1150. doi:10.1002/adhm.201200458
  13. Kim, H. S., Koo, D. S., Nam, Y. J., Cho, K. J., & Kim, S. (2019). Research on technology status and development direction of wearable robot. Fashion & Textile Research Journal, 21(5), 640-655. doi:10.5805/SFTI.2019.21.5.640
  14. Kim, H., Ahn, S. K., Mackie, D. M., Kwon, J., Kim, S. H., Choi, C., ... & Ko, S. H. (2020). Shape morphing smart 3D actuator materials for micro soft robot. Materials Today, 41, 243-269. doi:10.1016/j.mattod.2020.06.005
  15. Kokkinis, D., Schaffner, M., & Studart, A. R. (2015). Multimaterial magnetically assisted 3D printing of composite materials. Nature communications, 6(1), 1-10. doi:10.1038/ncomms9643
  16. Kolken, H. M., & Zadpoor, A. A. (2017). Auxetic mechanical metamaterials. RSC advances, 7(9), 5111-5129. doi:10.1039/C6RA27333E
  17. Kuang, X., Roach, D. J., Wu, J., Hamel, C. M., Ding, Z., Wang, T., ... & Qi, H. J. (2019). Advances in 4D printing - Materials and applications. Advanced Functional Materials, 29(2), 1805290. doi:10.1002/adfm.201805290
  18. Kuksenok, O., & Balazs, A. C. (2016). Stimuli-responsive behavior of composites integrating thermo-responsive gels with photo-responsive fibers. Materials Horizons, 3(1), 53-62. doi:10.1039/C5MH00212E
  19. Lakes, R. S., & Elms, K. (1993). Indentability of conventional and negative Poisson's ratio foams. Journal of Composite Materials, 27(12), 1193-1202. doi:10.1177/002199839302701203
  20. Lauff, C. Simpson, T.W. Frecker, M. Ounaies, Z. Ahmed, S. von Lockette, P. Strzelec, R. Sheridan, R., & Lien, J. M. (2014). Differentiating bending from folding in origami engineering using active materials. ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, pp. V05BT08A040-V005BT008A040. doi:10.1115/DETC2014-34702
  21. Lee, S. (2022). A review of 3D printing soft materials - 2022 additive manufacturing of soft materials conference. Fiber Technology & Industry, 26(3), 112-122.
  22. Li, H., Gao, X., & Luo, Y. (2016). Multi-shape memory polymers achieved by the spatio-assembly of 3D printable thermoplastic building blocks, Soft Matter 12, 3226-3233. doi:10.1039/C6SM00185H
  23. Liu, Y., Genzer, J., & Dickey, M. D. (2016). "2D or not 2D" - Shapeprogramming polymer sheets. Progress in Polymer Science, 52, 79-106. doi:10.1016/j.progpolymsci.2015.09.001
  24. Mao, Y., Yu, K., Isakov, M. S., Wu, J., Dunn, M. L., & Jerry Qi, H. (2015). Sequential self-folding structures by 3D printed digital shape memory polymers. Scientific Reports, 5(1), 1-12. doi:10.1038/srep13616
  25. Momeni, F., Liu, X., & Ni, J. (2017). A review of 4D printing. Materials & Design, 122, 42-79. doi:10.1016/j.matdes.2017.02.068
  26. Mutlu, R., Alici, G., in het Panhuis, M., Spinks, G. (2015). Effect of flexure hinge type on a 3D printed fully compliant prosthetic finger, 2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM)IEEE, pp. 790-795. doi:10.1109/AIM.2015.7222634
  27. Ou, J., Ma, Z., Peters, J., Dai, S., Vlavianos, N., & Ishii, H. (2018). KinetiX-designing auxetic-inspired deformable material structures. Computers & Graphics, 75, 72-81. doi:10.1016/j.cag.2018.06.003
  28. Papadopoulou, A., Laucks, J., & Tibbits, S. (2017). Auxetic materials in design and architecture. Nature Reviews Materials, 2(12), 1-3. doi:10.1038/natrevmats.2017.78
  29. Peraza-Hernandez, E. A., Hartl, D. J., Malak Jr, R. J., & Lago udas, D. C. (2014). Origami-inspired active structures - A synthesis and review. Smart Materials and Structures, 23(9), 094001. doi:10.1088/0964-1726/23/9/094001
  30. Pinskier, J., & Howard, D. (2022). From bioinspiration to computer generation - Developments in autonomous soft robot design. Advanced Intelligent Systems, 4(1), 2100086. doi:10.1002/aisy.202100086
  31. Raviv, D., Zhao, W., McKnelly, C., Papadopoulou, A., Kadambi, A., Shi, B., ... & Tibbits, S. (2014). Active printed materials for complex self-evolving deformations. Scientific Reports, 4(1), 1-8. doi:10.1038/srep07422
  32. Ren, X., Das, R., Tran, P., Ngo, T. D., & Xie, Y. M. (2018). Auxetic metamaterials and structures - A review. Smart materials and structures, 27(2), 023001. doi:10.1088/1361-665X/aaa61c
  33. Ryan, K. R., Down, M. P., & Banks, C. E. (2021). Future of additive manufacturing - Overview of 4D and 3D printed smart and advanced materials and their applications. Chemical Engineering Journal, 403, 126162. doi:10.1016/j.cej.2020.126162
  34. Ryu, J., D'Amato, M., Cui, X., Long, K. N., Jerry Qi, H., & Dunn, M. L. (2012). Photo-origami-Bending and folding polymers with light. Applied Physics Letters, 100(16), 161908. doi:10.1063/1.3700719
  35. Sun, L., & Huang, W. M. (2010). Mechanisms of the multi-shape memory effect and temperature memory effect in shape memory polymers. Soft Matter 6, 4403-4406. doi:10.1039/C0SM00236D
  36. Sydney Gladman, A., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L., & Lewis, J. A. (2016). Biomimetic 4D printing. Nature Materials, 15(4), 413-418. doi:10.1038/nmat4544
  37. Therien-Aubin, H., Wu, Z. L., Nie, Z., & Kumacheva, E. (2013). Multiple shape transformations of composite hydrogel sheets. Journal of the American Chemical Society, 135(12), 4834-4839. doi:10.1021/ja400518c
  38. Tibbits, S. (2014). 4D printing - Multi-material shape change. Architectural Design, 84(1), 116-121. doi:10.1002/ad.1710
  39. Tibbits, S., Mcknelly, C., Olguin, C., Dikovsky, D., & Hirsch, S. (2014). 4D Printing and universal transformation. Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA).
  40. Villar, G., Graham, A.D., & Bayley, H. (2013). A tissue-like printed material. Science, 340, 48-52. doi:10.1126/science.1229495
  41. Wagner, M., Chen, T., & Shea, K. (2017). Large shape transforming 4D auxetic structures. 3D printing and Additive Manufacturing, 4(3), 133-142. doi:10.1089/3dp.2017.0027
  42. Wang, J., & Chortos, A. (2022). Control strategies for soft robot systems. Advanced Intelligent Systems, 4(5), 2100165. doi:10.1002/aisy.202100165
  43. Wang, P., Casadei, F., Shan, S., Weaver, J. C., & Bertoldi, K. (2014). Harnessing buckling to design tunable locally resonant acoustic metamaterials. Physical Review Letters, 113(1), 014301. doi:10.1103/PhysRevLett.113.014301
  44. Wang, Q., & Zhao, X. (2014). Phase diagrams of instabilities in compressed film-substrate systems. Journal of Applied Mechanics, 81(5). 051004. doi:10.1115/1.4025828
  45. Wu, J., Yuan, C., Ding, Z., Isakov, M., Mao, Y., Wang, T., ... & Qi, H. J. (2016). Multi-shape active composites by 3D printing of digital shape memory polymers. Scientific Reports, 6(1), 1-11. doi:10.1038/srep24224
  46. Xie, T. (2010). Tunable polymer multi-shape memory effect. Nature, 464, 267-270. doi:10.1038/nature08863
  47. Xing, L., Wang, M., Zhang, J., Chen, X., & Ye, X. (2020). A survey on flexible exoskeleton robot. 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), pp. 170-174. doi:10.1109/ITNEC48623.2020.9084920
  48. Yu, K., Dunn, M. L., & Qi, H. J. (2015). Digital manufacture of shape changing components. Extreme Mechanics Letters, 4, 9-17. doi:10.1016/j.eml.2015.07.005
  49. Yu, K., Xie, T., Leng, J., Ding, Y., Qi, & H. J. (2012). Mechanisms of multi-shape memory effects and associated energy release in shape memory polymers. Soft Matter 8, 5687-5695. doi:10.1039/C2SM25292A
  50. Zhang, Q., Zhang, K., & Hu, G. (2016). Smart three-dimensional lightweight structure triggered from a thin composite sheet via 3D printing technique. Scientific Reports, 6(1), 1-8. doi:10.1038/srep22431
  51. Zhou, J., & Sheiko, S. S. (2016). Reversible shape-shifting in polymeric materials. Journal of Polymer Science Part B - Polymer Physics, 54(14), 1365-1380. doi:10.1002/polb.24014
  52. Zhou, Y., Huang, W. M., Kang, S. F., Wu, X. L., Lu, H. B., Fu, J., & Cui, H. (2015). From 3D to 4D printing - Approaches and typical applications. Journal of Mechanical Science and Technology, 29(10), 4281-4288. doi:10.1007/s12206-015-0925-0