DOI QR코드

DOI QR Code

Consumers' Negative Responses to the Communication Failure of Chatbots in Online Fashion Shopping Malls

온라인 패션 쇼핑몰 챗봇의 커뮤니케이션 실패에 대한 소비자의 부정적 반응

  • Seo, Min Jeong (Dept. of Fashion Design, Jeonbuk National University)
  • Received : 2021.11.25
  • Accepted : 2022.03.02
  • Published : 2022.04.30

Abstract

This study aims to understand the consumers' negative responses to communication failure of chatbots caused by their imperfections. Specifically, this study examines 1) the relationship among chatbot's communication failure, dissatisfaction, negative behavior (complaint, negative word-of-mouth (nWOM), and inertia); 2) the moderating effect of technostress on the relationship between chatbot's communication failure and dissatisfaction; 3) the differences in the negative responses between the generation MZ and the previous generations. Data were collected via an online survey. First, the participants interacted with the chatbot developed for this survey, to experience the chatbot's communication failure. Thereafter, they responded to a questionnaire. PLS-SEM was conducted using the R software environment to test the hypotheses. This study empirically identified that chatbot's communication failure positively affected dissatisfaction. In addition, the customers who were more dissatisfied with the chatbot's communication failures were more likely to complain than engage in nWOM. Compared to the generation MZ, chatbot's communication failure caused a higher level of dissatisfaction in previous generations. The results suggest that online shopping malls should carefully introduce an improved chatbot service after minimizing its communication failure rate. The chatbot developers of online shopping malls targeting middle-aged and elderly consumers should strive to develop and implement strategies to further alleviate consumers' dissatisfaction in the situation of chatbot's communication failure.

Keywords

Acknowledgement

본 논문은 2019년 대한민국 교육부와 한국연구재단의 지원을 받아 수행된 연구임(NRF-2019S1A5B5A07094451).

References

  1. Ahn, S. (2021, May 24). 미래 비즈니스 바꾸는 新인류 'MZ세대' ['MZ Generation', a new generation that will change the future business]. EconomyChosun. Retrieved November 19, 2021, from, http://economychosun.com/client/news/view.php?boardName=C00&t_num=13610830#
  2. Anderson, E. W. (1998). Customer satisfaction and word of mouth. Journal of Service Research, 1(1), 5-17. doi:10.1177/109467059800100102
  3. Ashfaq, M., Yun, J., Yu, S., & Loureiro, S. M. C. (2020). I, Chatbot - Modeling the determinants of users' satisfaction and continuance intention of AI-powered service agents. Telematics and Informatics, 54, 101473. doi:10.1016/j.tele.2020.101473
  4. Bachleda, C., & Berrada-Fathi, B. (2016). Is negative eWOM more influential than negative pWOM? Journal of Service Theory and Practice, 26(1), 109-132. doi:10.1108/JSTP-11-2014-0254
  5. Brod, C. (1984). Technostress - The human cost of the computer revolution. Reading, Mass - Addison-Wesley.
  6. Cha, J. (2021). The effect of UI usability of mobile healthcare applications on technostress and continuous use intention - Focusing on elderly users. Journal of Digital Convergence, 19(5), 295-305. doi:10.14400/JDC.2021.19.5.295
  7. Charlett, D., Garland, R., & Marr, N. (1995). How damaging is negative word of mouth. Marketing Bulletin, 6(1), 42-50.
  8. Chen, J. V., Tran, A., & Nguyen, T. (2019). Understanding the discontinuance behavior of mobile shoppers as a consequence of technostress - An application of the stress-coping theory. Computers in Human Behavior, 95, 83-93. doi:10.1016/j.chb.2019.01.022
  9. Cho, S. B., Jang, Y. J., & Kim, W. G. (2017). The moderating role of severity of service failure in the relationship among regret/disappointment, dissatisfaction, and behavioral intention. Journal of Quality Assurance in Hospitality and Tourism, 18(1), 69-85. doi:10.1080/1528008x.2016.1169470
  10. Chung, B., Min, S., Lee, Y., & Han, Y. (2021). 2020 인터넷이용실태조사 [2020 survey on the internet usage]. National Information Society Agency. Retrieved August 7, 2021, from, https://www.nia.or.kr/common/board/Download.do?bcIdx=21013&cbIdx=99870&fileNo=2
  11. Chung, M., Ko, E., Joung, H., & Kim, S. J. (2020). Chatbot e-service and customer satisfaction regarding luxury brands. Journal of Business Research, 117, 587-595. doi:10.1016/j.jbusres.2018.10.004
  12. Fan, A., Wu, L., & Mattila, A. S. (2018). Gender differences in the intentions to voice complaints across different service failure modes. Journal of Foodservice Business Research, 21(1), 22-32. doi:10.1080/15378020.2016.1229091
  13. Han, S., & Sung, H. (2007). A new findings on negative behavioral responses to disappointment, betrayal, regret in failed services. Consumer Behavior & Theory, 10(2), 1-28. doi:10.17053/jcc.2007.10.2.001
  14. Harrison Walker, L. J. (2001). E complaining - A content analysis of an Internet complaint forum. Journal of Services Marketing, 15(5), 397-412. doi:10.1108/EUM0000000005657
  15. Henseler, J., Ringle, C. M., & Sinkovics, R. R. (2009). The use of partial least squares path modeling in international marketing. New Challenges to International Marketing, 20, 277-3120 doi:10.1108/S1474-7979(2009)0000020014
  16. Hill, J., Ford, W. R., & Farreras, I. G. (2015). Real conversations with artificial intelligence - A comparison between human-human online conversations and human-chatbot conversations. Computers in Human Behavior, 49, 245-250. doi:10.1016/j.chb.2015.02.026
  17. Holloway, B. B., & Beatty, S. E. (2003). Service failure in online retailing - A recovery opportunity. Journal of Service Research, 6(1), 92-105. doi:10.1177/1094670503254288
  18. Hong, H., & Ryu, S. (2012). Motives for writing after-purchase consumer reviews in online stores and classification of online store shoppers. Journal of Distribution Research, 17(3), 25-57.
  19. Hyun, Y. G., Lim, J. T., Han, J. H., Chae, U., Lee, G.-H., Ko, J. D., Cho, Y. H., & Lee, J. Y. (2020). A study on the development methodology for user-friendly interactive chatbot. Journal of Digital Convergence, 18(11), 215-226. doi:10.14400/JDC.2020.18.11.215
  20. Jang, Y. J., Cho, S. B., & Kim, W. G. (2013). Effect of restaurant patrons' regret and disappointment on dissatisfaction and behavioral intention. Journal of Travel and Tourism Marketing, 30(5), 431-444. doi:10.1080/10548408.2013.803388
  21. Janssen, A., Grutzner, L., & Breitner, M. H. (2021). Why do chatbots fail? A critical success factors analysis. Retrieved November 16, 2021, from, https://aisel.aisnet.org/icis2021/hci_robot/hci_robot/6
  22. Jeong, S. G., Hur, H. J., & Choo, H. J. (2020). The effect of fashion shopping chatbot characteristics on service acceptance intention - Focusing on anthropomorphism and personalization. Journal of the Korean Society of Clothing and Textiles, 44(4), 573-593. doi:10.5850/jksct.2020.44.4.573
  23. Ju, S. R., & Chung, M. S. (2008). A study on customer dissatisfaction, complaining behavior, and long-term orientation of internet fashion shopping mall. Journal of the Korean Society of Clothing and Textiles, 32(12), 1866-1877. doi:10.5850/jksct.2008.32.12.1866
  24. Jung, M. (2020a, October 6). (콜센터가 사라진다) ② 너도나도 'AI챗봇' 도입... 2024년 시장 규모 10조원까지 성장 [(The disappearing call center) ② AI chatbots are adopting... market size is expected to grow by 10 trillion won in 2024]. Aju Business Daily. Retrieved November 24, 2021, from, https://www.ajunews.com/view/20201006002514980
  25. Jung, Y. S. (2020b). 유통업 지각 변동 몰고 온 언택트 쌍방향 소통 '라이브 커머스'에 올라타라 [Ride on live commerce, an untact interactive communication that has caused a cataclysmic change in the retail industry]. DBR, May(2). Retrieved March 18, 2022, from, https://dbr.donga.com/article/view/1202/article_no/9609/ac/magazine
  26. Kim, B. K., Kim, H. A., Sim, C. E., & Jeong, J. W. (2017). Design and implementation of crowd-sourced Q&A system based on social chat-bot. The Journal of Korean Institute of Information Technology, 15(11), 125-138. doi:10.14801/jkiit.2017.15.11.125
  27. Kim, E. (2018, January 8). 쇼핑 비서 '챗봇' 써보니... 롱패딩은 알아도 인조모피는 몰라 [My shopping secretary 'chatbot' knows about long padding jackets but does not know about fake fur]. Chosun Biz,. Retrieved June 11, 2019, from, http://news.chosun.com/site/data/html_dir/2018/01/08/2018010800500.html
  28. Kim, H. J., & Cho, S. (2018). The effect of negative expectancy disconfirmation of restaurant customers on complaining behavior and switching intention - Comparative study in Korea and Japan. Journal of Product Research, 36(6), 17-29. doi:10.36345/kacst.2018.36.6.002
  29. Kim, J. (2017, January 10). 챗봇이 뜬다② 커머스편] 인터파크와 11번가를 통해 바라보는 커머스 챗봇의 내일 [Chatbots are rising ② commerce edition] The tomorrow of commerce chatbots viewed through Interpark and 11th Street]. CLO. Retrieved January 25, 2021, from http://clomag.co.kr/article/2045
  30. Kim, J. (2021, June 8). 코어에이아이, "국내 기업 39%, 챗봇 운영시 질문 의도 파악 못해 어려움 겪어 [Kore.AI, "39% of domestic companies have difficulties in understanding the intent of the question when operating a chatbot]. Electronic Times. Retrieved November 11, 2021, from https://www.etnews.com/20210608000205?m=1
  31. Kim, J. Y., & Cho, M. H. (2017). The effect of service failure on face loss and complaint behavior - Focused on full service restaurant. Journal of Foodservice Management Society of Korea, 20(1), 63-85.
  32. Kim, M. G., Wang, C., & Mattila, A. S. (2010). The relationship between consumer complaining behavior and service recovery - An integrative review. International Journal of Contemporary Hospitality Management, 22(7), 975-991. doi:10.1108/09596111011066635
  33. Kim, S. H. (2006). A study on the effects of consumer attributes and emotions on dissatisfaction and behaviors in case of negative expectancy disconfirmation - Comparison for relative influence according to consumers' efforts before purchase. Korean Management Review, 35(5), 1497-1528.
  34. Kim, S. H., Park, J. H., & Kim, D. (2016). The effects of recovery effort through recovery satisfaction on switching behavior and negative word-of-mouth in service failure - Direct and moderate effect of cheong. Journal of Marketing Management Research, 21(3), 23-51.
  35. Kim, T. (2014, January 12). 스마트폰과 건강, 당신도 '테크노 스트레스'? [Smartphone and health, are you also 'technostress'?]. Korea Herald Business. Retrieved November 24, 2021, from http://news.heraldcorp.com/view.php?ud=20140110000087
  36. Kong, O. R., & Rhee, H. J. (2009). A comparative study on negative emotions triggering behavioral responses and dissatisfaction due to failed service encounters. Journal of Korea Service Management Society, 10(1), 271-298. doi:10.15706/jksms.2009.10.1.012
  37. Kwak, J., Kim, N., & Kim, M. S. (2019). The relationship among chatbot's characteristics, service value, and customer satisfaction. International Journal of Industrial Distribution & Business, 10(3), 45-58. doi:10.13106/ijidb.2019.vol10.no3.45.
  38. Lee, C. H., & Cranage, D. A. (2012). Toward understanding consumer processing of negative online word-of-mouth communication - The roles of opinion consensus and organizational response strategies. Journal of Hospitality & Tourism Research, 38(3), 330-360. doi:10.1177/1096348012451455
  39. Lee, K. Y. (2017). A study of structural relationship between technostress and mobile application discontinuance intention. Korean Journal of Business Administration, 30(10), 1835-1855. doi:10.18032/kaaba.2017.30.10.1835
  40. Lee, M. K., & Park, H. (2019). Exploring factors influencing usage intention of chatbot - Chatbot in financial service. Journal of the Korean Society for Quality Management, 47(4), 755-765. doi:10.7469/JKSQM.2019.47.4.755
  41. Lee, S. B., Moon, J. Y., & Kwak, J. S. (2014a). A study on the consumer choice by technostress - Focused on facebook. The Journal of the Korea Contents Association, 14(12), 402-410.
  42. Lee, Y. K., Chang, C. T., Lin, Y., & Cheng, Z. H. (2014b). The dark side of smartphone usage - Psychological traits, compulsive behavior and technostress. Computers in Human Behavior, 31, 373-383. doi:10.1016/j.chb.2013.10.047
  43. Li, L., Lee, K. Y., Emokpae, E., & Yang, S. B. (2021). What makes you continuously use chatbot services? Evidence from chinese online travel agencies. Electronic Markets, 31, 575-599. doi:10.1007/s12525-020-00454-z
  44. Liu, K. Y., & Ryu, M. H. (2021). A Study on dissatisfaction and complaining behavior on SNS market - Verification of moderating effect of subjective knowledge. Journal of Consumption Culture, 24(1), 23-47. doi:10.17053/jcc.2021.24.1.002
  45. Nam, H. (2020, November 13). AI 도입한 기업들, 실효성 떨어져 '속앓이' [The chatbot adopted companies suffer from the low effectiveness of chatbots]. ZDNet Korea. Retrieved January18, 2021, from https://zdnet.co.kr/view/?no=20201111161552
  46. Oliver, R. L. (1987). An investigation of the interrelationship between consumer (dis) satisfaction and complaint reports. Advances in Consumer Research, 14(1), 218-222.
  47. 'Pandemic resurgence and the changing role of chatbot'. (2020, August 23). Tony Around. Retrieved September 5, 2021, from https://tonyaround.com/%ED%8E%9C%EB%8D%B0%EB%AF%B9-%EC%9E%AC%EC%9C%A0%ED%96%89%EA%B3%BC-%EC%B1%97%EB%B4%87%EC%9D%98-%EC%97%AD%ED%95%A0-%EB%B3%80%ED%99%94/
  48. Park, B. D., & Park, J. Y. (2003). A study on customer dissatisfaction and complaining behavior of internet shopping mall. Journal of Marketing Management Research, 8(3), 83-106.
  49. Park, J. (2017). 챗봇의 역할은 '수다꾼' 아닌 효율성. 알고리즘 보다 데이터 품질 높여야 [The role of chatbots is efficiency, not chatter. Better data quality than algorithms]. Dong-A Business Review. Retrieved November 11, 2021, from https://dbr.donga.com/article/view/1101/article_no/8181/ac/special
  50. Park, K. & Ryu, G. (2011). The impact of word-of-mouth transmission on communicator's affective responses - The role of word-of-mouth valence and motive. Journal of Consumer Studies, 22(4), 77-101.
  51. Park, N., Choi, H., & Lee, C. (2011). Factors influencing technostress of smartphone users. The Journal of Korean Institute of Information Technology, 9(2), 179-186.
  52. Park, S. J., & John, C. M. (2009). Consumers' attitude toward complaining - A cross-cultural comparison of its traits predictors. Asia Marketing Journal, 11(1), 1-27.
  53. Richins, M. L. (1983). Negative word-of-mouth by dissatisfied consumers - A pilot study. Journal of Marketing, 47(1), 68-78. doi:10.2307/3203428
  54. Ro, H. (2014). Complaint, patience, and neglect - Responses to a dissatisfying service experience. Service Business, 8(2), 197-216. doi:10.1007/s11628-013-0193-y
  55. Sanchez, G. (2013). PLS path modeling with R. Trowchez Editions. Retrieved August 1, 2021, from http://www.gastonsanchez.com/ PLS Path Modeling with R.pdf
  56. Sanchez, G., Trinchera, L., & Russolillo, G. (2017). plspm - Tools for Partial Least Squares Path Modeling (PLS-PM). In (Version R package version 0.4.9) Retrieved August 1, 2021, from https://CRAN.R-project.org/package=plspm
  57. Shim, E. S., & Rhee, H. J. (2013). Influences of consumer perceived risks and valence of word of mouth information on purchase intention in social commerce. Journal of Information Technology Services, 12(3), 73-93. doi:10.9716/kits.2013.12.3.073
  58. Son, J. A., & Rhee, E.-Y. (2007). The effects of information characteristics(direction, consensus) on word-of-mouth performance in online apparel shopping. Journal of the Korean Society of Clothing and Textiles, 31(8), 1157-1167. doi:10.5850/JKSCT.2007.31.8.1157
  59. Song, Y. J., & Choi, S. M. (2020). The effects of chatbots' anthropomorphism and self-disclosure on consumers' perceptions of and attitude toward the chatbots. Journal of the HCI Society of Korea, 15(1), 17-28. doi:10.17210/jhsk.2020.03.15.1.17
  60. Suh, C. J., & Yoon, J. O. (2019). The effects of perceived chatbot service quality on customer satisfaction and word of mouth Journal of Korea Service Management Society, 20(1), 201-222. doi:10.15706/jksms.2019.20.1.010
  61. Sweeney, J., Soutar, G., & Mazzarol, T. (2007). The differences between positive and negative word-of-mouth - Emotion as a differentiator. In S. Gopalan & N. Taher (Eds.), Viral Marketing: Concepts and Cases (pp. 156-168). ICFAI University Press.
  62. Tien, D. H., Rivas, A. A. A., & Liao, Y. K. (2019). Examining the influence of customer-to-customer electronic word-of-mouth on purchase intention in social networking sites. Asia Pacific Management Review, 24(3), 238-249. doi:10.1016/j.apmrv.2018.06.003
  63. Um, K. H., & Kim, S. M. (2018). Application of fairness theory to medical tourists' dissatisfaction and complaint behaviors - The moderating role of patient participation in medical tourism. Journal of Social Service Research, 44(2), 191-208. https://doi.org/10.1080/01488376.2018.1436633
  64. Verkijika, S. F. (2019). Digital textbooks are useful but not everyone wants them - The role of technostress. Computers & Education, 140, 1-16. doi:10.1016/j.compedu.2019.05.017
  65. Wetzer, I. M., Zeelenberg, M., & Pieters, R. (2007). "Never eat in that restaurant, I did!" - Exploring why people engage in negative word-of-mouth communication. Psychology & Marketing, 24(8), 661-680. doi:10.1002/mar.20178.
  66. Yim, M., & Park, M. (2015). An exploratory research on individual differences of technostress - In convergence age. Journal of Digital Convergence, 13(3), 137-153. doi:10.14400/JDC.2015.13.3.137
  67. Yoon, C., & Kim, S. (2014). A tutorial on PLS structural equating modeling using R - (Centering on) Exemplified research model and data. Information Systems Review, 16(3), 89-112. doi:10.14329/isr.2014.16.3.089
  68. Yun, H. S., Kim, J. H., & Bae, S. W. (2016). The relationship between high-tech product WOM information characteristics and WOM effectiveness under SNS environment. The Korean Journal of Advertising, 27(2), 113-136. doi:10.14377/kja.2016.2.28.113
  69. Zeelenberg, M., & Pieters, R. (2004). Beyond valence in customer dissatisfaction - A review and new findings on behavioral responses to regret and disappointment in failed services. Journal of Business Research, 57(4), 445-455. doi:10.1016/S0148-2963(02)00278-3