DOI QR코드

DOI QR Code

부산 하수처리장에서 공정별 용존 희토류 원소의 농도 및 인위적 기원 가돌리늄의 배출량 평가

Assessments of Dissolved Rare Earth Elements and Anthropogenic Gadolinium Concentrations in Different Processes of Wastewater Treatment Plant in Busan, Korea

  • 임이진 (부경대학교 지구환경시스템과학부) ;
  • 류종식 (부경대학교 지구환경시스템과학부) ;
  • 이준엽 (부경대학교 지구환경시스템과학부) ;
  • 이준호 (부경대학교 실습선 나라호) ;
  • 조형미 (인하대학교 해양과학과) ;
  • 김태진 (부경대학교 지구환경시스템과학부)
  • Lim, Ijin (Division of Earth Environmental System Science, Pukyong National University) ;
  • Ryu, Jong-Sik (Division of Earth Environmental System Science, Pukyong National University) ;
  • Lee, Joonyeob (Division of Earth Environmental System Science, Pukyong National University) ;
  • Lee, Jun-Ho (Training Ship NARA, Pukyong National University) ;
  • Cho, Hyung-Mi (Department of Ocean Sciences, Inha University) ;
  • Kim, Taejin (Division of Earth Environmental System Science, Pukyong National University)
  • 투고 : 2022.01.17
  • 심사 : 2022.02.03
  • 발행 : 2022.04.30

초록

자기공명영상(MRI) 장비의 조영제로 흔히 사용되는 가돌리늄(Gd)은 매우 안정된 상태로 하수처리과정에서 거의 제거되지 않고 수환경으로 유입된다고 알려져 있다. 따라서 본 연구에서는 세 가지의 공법으로 하수처리를 하는 부산 수영 하수처리장에서 채취한 하수 시료의 공정별 용존 희토류 원소의 제거율 및 수환경으로 배출되는 인위적 기원 Gd(Gdanth)의 배출량을 평가하고자 하였다. 용존 희토류 원소는 공정별 처리 단계에 따라 무거운 희토류 원소(Tb-Lu)에 비해 가벼운 희토류 원소(La-Eu)에서 농도가 감소하는 경향을 보였다. 또한 일부 시료에서 나타난 음의(negative) Sm anomaly (<1)는 생물학적 제거 과정에서 Sm이 입자나 인산염과 흡착되어 함께 제거되었을 가능성을 시사한다. 모든 시료에서 양의(positive) Gd anomaly (149±50, n=9)를 보였으며, 공정별로 측정된 Gd의 총 농도 중 Gdanth은 약 97% 이상을 차지하는 것으로 나타났다. 이는 하수처리과정에서 Gdanth 이 거의 제거되지 않고 수영강 하류로 배출된다는 것을 의미한다. 일별 처리용량을 고려하여 각 공정에서 배출되는 Gdanth의 배출량은 259 mmol/day로 추정할 수 있다. 본 연구의 결과는 하수처리장을 통해 수영만 연안으로 Gdanth이 지속적으로 배출될 것으로 예상되며, 향후 Gd의 중장기적인 관측이 필요함을 시사한다.

Gadolinium, commonly used as a contrast agent for magnetic resonance imaging (MRI), is discharged into aquatic environments without removal after treatment in wastewater treatment plants (WWTPs) because of its high stability. In this study, we collected water samples from Suyeong WWTP, Busan, to investigate the dissolved rare earth element (REE) removal capacity of each wastewater treatment process and to evaluate the discharge of anthropogenic Gd (Gdanth) from effluents. As wastewater passed through each stage of treatment, the concentrations of light REEs (La-Eu) decreased, whereas those of heavy REEs (Tb-Lu) were relatively consistent. Negative Sm anomalies (<1) were observed in several samples, indicating that Sm can be removed by adsorption onto particles or phosphate during the biological removal process. Positive Gd anomalies (149±50, n=9) were observed in all samples. The ratios of Gdanth concentrations to measured Gd concentrations in all wastewater treatment processes were higher than 97%. This indicates that Gdanth was discharged to the Suyeong River without removal during the wastewater treatment process. Considering the daily treatment capacity in each process, the total flux of Gdanth was estimated to be 259 mmol/day. Our results suggest that mid- and/or long-term monitoring of Gd is needed because Gdanth is continuously discharged into Suyeong Bay through WWTPs.

키워드

과제정보

이 논문은 부경대학교 자율창의학술연구비(2021년)에 의하여 연구되었음.

참고문헌

  1. Bau, M. and Dulski, P., 1996, Anthropogenic origin of positive gadolinium anomalies in river waters. Earth and Planetary Science Letters, 143(1-4), 245-255. https://doi.org/10.1016/0012-821X(96)00127-6
  2. Bau, M., Knappe, A., and Dulski, P., 2006, Anthropogenic gadolinium as a micropollutant in river waters in Pennsylvania and in Lake Erie, northeastern United States. Chemie der Erde, 66(2), 143-152. https://doi.org/10.1016/j.chemer.2006.01.002
  3. Chakhmouradian, A.R. and Wall, F., 2012, Rare earth elements: Minerals, mines, magnets (and more). Elements, 8(5), 333-340. https://doi.org/10.2113/gselements.8.5.333
  4. Han, B., Chen, N., Deng, D., Deng, S., Djerdj, I., and Wang, Y., 2015, Enhancing phosphate removal from water by using ordered mesoporous silica loaded with samarium oxide. Analytical Methods, 7(23), 10052-10060. https://doi.org/10.1039/C5AY02319J
  5. Hathorne, E.C., Haley, B., Stichel, T., Grasse, P., Zieringer, M., and Frank, M., 2012, Online preconcentration ICP-MS analysis of rare earth elements in seawater. Geochemistry, Geophysics, Geosystems, 13(1), 1-12. https://doi.org/10.1029/2011GC003955
  6. Hatje, V., Bruland, K.W., and Flegal, A.R., 2016, Increases in Anthropogenic Gadolinium Anomalies and Rare Earth Element Concentrations in San Francisco Bay over a 20 Year Record. Environmental Science & Technology, 50(8), 4159-4168. https://doi.org/10.1021/acs.est.5b04322
  7. Inoue, K., Fukushi, M., Sahoo, S.K., Veerasamy, N., Furukawa, A., Soyama, S., Sakata, A., Isoda, R., Taguchi, Y., Hosokawa, S., Sagara, H., and Natarajan, T., 2022, Measurements and future projections of Gd-based contrast agents for MRI exams in wastewater treatment plants in the Tokyo metropolitan area. Marine Pollution Bulletin, 174, 113259. https://doi.org/10.1016/j.marpolbul.2021.113259
  8. Kim, I., Kim, S.H., and Kim, G., 2020a, Anthropogenic gadolinium in lakes and rivers near metrocities in Korea. Environment Science: Processes & Impacts, 22(1), 144-151. https://doi.org/10.1039/C9EM00304E
  9. Kim, T., Kim, H., and Kim, G., 2020b, Tracing river water versus wastewater sources of trace elements using rare earth elements in the Nakdong River estuarine waters. Marine Pollution Bulletin, 160, 111589. https://doi.org/10.1016/j.marpolbul.2020.111589
  10. Kummerer, K. and Helmers, E., 2000, Hospital effluents as a source of gadolinium in the aquatic environment. Environmental Science & Technology, 34(4), 573-577. https://doi.org/10.1021/es990633h
  11. Kulaksiz, S. and Bau, M., 2007, Contrasting behaviour of anthropogenic gadolinium and natural rare earth elements in estuaries and the gadolinium input into the North Sea. Earth and Planetary Science Letters, 260(1-2), 361-371. https://doi.org/10.1016/j.epsl.2007.06.016
  12. Kulaksiz, S. and Bau, M., 2013, Anthropogenic dissolved and colloid/nanoparticle-bound samarium, lanthanum and gadolinium in the Rhine River and the impending destruction of the natural rare earth element distribution in rivers. Earth and Planetary Science Letters, 362, 43-50. https://doi.org/10.1016/j.epsl.2012.11.033
  13. Kunhikrishnan, A., Rahman, M.A., Lamb, D., Bolan, N.S., Saggar, S., Surapaneni, A., and Chen, C., 2022, Rare earth elements (REE) for the removal and recovery of phosphorus: A review. Chemosphere, 286, 131661. https://doi.org/10.1016/j.chemosphere.2021.131661
  14. Lawrence, M.G., 2010, Detection of anthropogenic gadolinium in the Brisbane River plume in Moreton Bay, Queensland, Australia. Marine Pollution Bulletin, 60(7), 1113-1116. https://doi.org/10.1016/j.marpolbul.2010.03.027
  15. Liang, Z. and Hu, Z., 2012, Start-up performance evaluation of submerged membrane bioreactors using conventional activated sludge process and modified Luzack-Ettinger process. Journal of Environmental Engineeing, 138(9), 932-939. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000559
  16. Massari, S. and Ruberti, M., 2013, Rare earth elements as critical raw materials: Focus on international markets and future strategies. Resources Policy, 38(1), 36-43. https://doi.org/10.1016/j.resourpol.2012.07.001
  17. McLennan, S.M., 1989, Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes. Reviews in Mineralogy & Geochemistry, 21, 169-200.
  18. Meerburg, F.A., Boon, N., Van Winckel, T., Vercamer, J.A.R., Nopens, I., and Vlaeminck, S.E., 2015, Toward energy-neutral wastewater treatment: A high-rate contact stabilization process to maximally recover sewage organics. Bioresource Technology, 179, 373-381. https://doi.org/10.1016/j.biortech.2014.12.018
  19. Migaszewski, Z.M. and Galuszka, A., 2015, The characteristics, occurrence, and geochemical behavior of rare earth elements in the environment: A review. Critical Reviews in Environmental Science and Technology, 45(5), 429-471. https://doi.org/10.1080/10643389.2013.866622
  20. Moller, P., Paces, T., Dulski, P., and Morteani, G., 2002, Anthropogenic Gd in Surface Water, Drainage System, and the Water Supply of the City of Prague, Czech Republic. Environmental Science & Technology, 36(11), 2387-2394. https://doi.org/10.1021/es010235q
  21. Nozaki, Y., 2001, Rare earth elements and their isotopes in the ocean. Encyclopedia of Ocean Sciences, 4, 2354-2366. https://doi.org/10.1006/rwos.2001.0284
  22. Nozaki, Y., Lerche, D., Alibo, D.S., and Tsutsumi, M., 2000, Dissolved indium and rare earth elements in three Japanese rivers and Tokyo Bay: Evidence for anthropogenic Gd and In. Geochimica et Cosmochimica Acta, 64(23), 3975-3982. https://doi.org/10.1016/S0016-7037(00)00472-5
  23. Pereao, O., Bode-Aluko, C., Fatoba, O., Laatikainen, K., and Petrik, L., 2018, Rare earth elements removal techniques from water/wastewater: A review. Desalination Water Treat, 130, 71-86. https://doi.org/10.5004/dwt.2018.22844
  24. Seo, H. and Kim, G., 2020, Rare earth elements in the East Sea (Japan Sea): Distributions, behaviors, and applications. Geochimica et Cosmochimica Acta, 286, 19-28. https://doi.org/10.1016/j.gca.2020.07.016
  25. Sholkovitz, E.R., 1993, The geochemistry of rare earth elements in the Amazon River estuary. Geochimica et Cosmochimica Acta, 57(10), 2181-2190. https://doi.org/10.1016/0016-7037(93)90559-F
  26. Song, H., Shin, W.J., Ryu, J.S., Shin, H.S., Chung, H., and Lee, K.S., 2017, Anthropogenic rare earth elements and their spatial distributions in the Han River, South Korea. Chemosphere, 172, 155-165. https://doi.org/10.1016/j.chemosphere.2016.12.135
  27. Telgmann, L., Wehe, C.A., Birka, M., Ku, J., Nowak, S., Sperling, M., and Karst, U., 2012, Speciation and Isotope Dilution Analysis of Gadolinium-Based Contrast Agents in Wastewater. Environmental Science & Technology, 46(21), 11929-11936. https://doi.org/10.1021/es301981z
  28. Zhi, Y., Zhang, C., Hjorth, R., Baun, A., Duckworth, O.W., Call, D.F., Knappe, D.R.U., Jones, J.L., and Grieger, K., 2020, Emerging lanthanum (III)-containing materials for phosphate removal from water: A review towards future developments. Environmet International, 145, 106115.