DOI QR코드

DOI QR Code

Analysis of the Long-Range Transport Contribution to PM10 in Korea Based on the Variations of Anthropogenic Emissions in East Asia using WRF-Chem

WRF-Chem 모델을 활용한 동아시아의 인위적 배출량 변동에 따른 한국 미세 먼지 장거리 수송 기여도 분석

  • Lee, Hyae-Jin (Department of Earth Science Education, Korean National University of Education) ;
  • Cho, Jae-Hee (Natural Science Institute, Korean National University of Education)
  • 이혜진 (한국교원대학교 지구과학교육과) ;
  • 조재희 (한국교원대학교 자연과학연구소)
  • Received : 2022.03.28
  • Accepted : 2022.04.18
  • Published : 2022.04.30

Abstract

Despite the nationwide COVID-19 lockdown in China since January 23, 2020, haze days with high PM10 levels of 88-98 ㎍ m-3 occurred on February 1 and 2, 2020. During these haze days, the East Asian region was affected by a warm and stagnant air mass with positive air temperature anomalies and negative zonal wind anomalies at 850 hPa. The Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) was used to analyze the variation of regional PM10 aerosol transport in Korea due to decreased anthropogenic emissions in East Asia. The base experiment (BASE), which applies the basic anthropogenic emissions in the WRF-Chem model, and the control experiment (CTL) applied by reducing the anthropogenic emission to 50%, were used to assess uncertainty with ground-based PM10 measurements in Korea. The index of agreement (IOA) for the CTL simulation was 0.71, which was higher than that of BASE (0.67). A statistical analysis of the results suggests that anthropogenic emissions were reduced during the COVID-19 lockdown period in China. Furthermore, BASE and CTL applied to zero-out anthropogenic emissions outside Korea (BASE_ZEOK and CTL_ZEOK) were used to analyze the variations of regional PM10 aerosol transport in Korea. Regional PM10 transport in CTL was reduced by only 10-20% compared to BASE. Synthetic weather variables may be another reason for the non-linear response to changes in the contribution of regional transport to PM10 in Korea with the reduction of anthropogenic emissions in East Asia. Although the regional transport contribution of other inorganic aerosols was high in CTL (80-90%), sulfate-nitrate-ammonium (SNA) aerosols showed lower contributions of 0-20%, 30-60%, and 30-60%, respectively. The SNA secondary aerosols, particularly nitrates, presumably declined as the Chinese lockdown induced traffic.

2020년 1월 23일 이후 중국에서 신종 코로나바이러스 감염증(COVID-19)으로 인한 봉쇄 조치가 전국으로 확대되고 있었다. 그러나, 한국에서는 2020년 2월 1-2일에 PM10 질량농도 일평균 최대 88-98 ㎍ m-3의 고농도 연무가 발생하였다. 이 기간에 동아시아 지역은 850 hPa 기온 아노말리가 양(+), 동서류 아노말리는 음(-)으로 온난하고 정체적인 기단의 영향을 받고 있었다. 동아시아 지역의 인위적 배출량 감소에 따른 한국의 PM10 장거리 수송의 영향을 분석하기 위하여 WRF-Chem을 활용하였다. WRF-Chem에 인위적 배출량을 변화 없이 적용한 BASE와 인위적 배출량을 50%로 감소시켜 적용한 CTL의 PM10을 한국의 지상 측정값과 민감도 분석을 수행하였다. CTL에서 PM10의 IOA는 0.71로 BASE의 0.67보다 높게 나타났다. 이것은 중국의 COVID-19 봉쇄 조치로 인해 인위적 배출량이 감소한 것으로 분석된다. 또한, 한국 이외의 지역 배출량을 0으로 설정한 BASE_ZEOK와 CTL_ZEOK를 모의하여 BASE와 CTL에서의 장거리 수송 기여도의 변동을 분석하였다. CTL은 BASE와 비교하여 배출량이 50%로 감소하였지만 PM10 장거리 수송 기여도는 10-20% 감소한 것으로 나타났다. 동아시아 지역의 배출량 감소에 따라 풍하측 한국의 PM10 장거리 수송 기여도 변동이 선형적으로 반응하지 않는 것은 종관 기상 변동이 영향을 주는 것으로 보인다. 2월 1-2일 한국의 고농도 PM10 연무 사례에 대한 CTL에서 PM10 에어로졸 성분의 장거리 수송 기여도는 기타 무기물이 80-90%로 가장 높았고, 질산염은 30-60%, 황산염은 0-20%, 암모늄은 30-60%를 나타내고 있었다. 중국의 봉쇄 조치로 인하여 교통 및 물류 수송이 감소하면서 2차 에어로졸이 감소한 것으로 보인다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. NRF-2022R1C1C2007533).

References

  1. Albrecht, B.A., 1989, Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 1227-1230, doi:10.1126/science.245.4923.1227.
  2. Bae, M.A., Kim, B.U., Kim, H.C., and Kim, S.T., 2020, A Multiscale tiered approach to quantify contributions: A case study of PM2.5 in South Korea during 2010-2017. Atmosphere, 11, 141, doi:10.3390/atmos11020141.
  3. Bian, Q., Huang, H.H., and Yu, J.Z., 2014, One-year observations of size distribution characteristics of major aerosol constituents at a coastal receptor site in Hong Kong-Part 1: Inorganic ions and oxalate. Atmospheric Chemistry and Physics, 14, 9013-9027, doi:10.5194/acp14-9013-2014.
  4. Cho, J.H., Kim, H.S., and Chung, Y.S., 2021, Spatio-temporal changes of PM10 trends in South Korea caused by East Asian atmospheric variability. Air Quality, Atmosphere and Health, 14, 1001-1016, doi:10.1007/s11869-021-00995-y.
  5. Choi, J., Park, R.J., Lee, H.M., Lee, S., Jo, D.S., Jeong, J.I., Henze, D.K., Woo, J.H., Ban, S.J., Lee, M.D., Lim, C.S., Park, M.K., Shin, H.J., Cho, S., Peterson, D., and Song, C.K., 2019, Impacts of local vs. trans-boundary emissions from different sectors on PM2.5 exposure in South Korea during the KORUS-AQ campaign. Atemopheric Environment, 203, 196-205, doi:10.1016/j.atmosenv.2019.02.008.
  6. Doumbia, T., Granier, C., Elguindi, N., Bouarar, I., Darras, S., Brasseur, G., Gaubert, B., Liu, Y., Shi, X., Stavrakou, T., Tilmes, S., Lacey, F., Deroubaix, A., and Wang, T., 2021, Changes in global air pollutant emissions during the COVID-19 pandemic: A dataset for atmospheric modeling. Earth System Science Data, 13, 4191-4206, doi:10.5194/essd-13-4191-2021.
  7. Durkee, P.A., Noone, K.J., Ferek, R.J., Johnson, D.W., Taylor, J.P., Garrett, T.J., Hobbs, P.V., Hudson, J.G., Bretherton, C.S., Innis, G., Frick, G.M., Hoppel, W.A., O'Dowd, C.D., Russell, L.M., Gasparovic, R., Nielsen, K.E., Tessmer, S.A., Ostrom, E., Osborne, S.R., Flagan, R.C., Seinfeld, J.H., and Rand, H., 2000, The impact of ship-produced aerosols on the microstructure and albedo of warm marine stratocumulus clouds: A test of MAST hypotheses 1I and 1II. Journal of the Atmospheric Science, 57, 2254-2569, doi:10.1016/j.atmosenv.2018.09.026.
  8. Grell, G.A., Peckham, S.E., Schmitz, R., McKeen, S.A., Frost, G., Skamarock, W.C., and Eder, B., 2005, Fully coupled "online" chemistry within the WRF model. Journal of Atmospheric Environment, 39, 6957-6975, doi:10.1016/j.atmosenv.2005.04.027.
  9. Griffith, S.M., Huang, W.S., Lin, C.C., Chen, Y.C., Chang, K.E., Lin, T.H., Wang, S.H., and Lin, N.H., 2020, Long-range air pollution transport in East Asia during the first week of the COVID-19 lockdown in China. Journal of Science of the Total Environment, 741, 140214, doi:10.1016/j.scitotenv.2020.140214.
  10. Han, S.H. and Kim, Y.P., 2015, Long-term trend of the concentrations of mass and chemical composition in PM2.5 over Seoul. Jounal of Korean Society for Atmospheric Environment, 31, 143-156, doi:10.5572/KOSAE.2015.31.2.143. (in Korean)
  11. Jiaxin, C., Hui, H., Feifei, W., Mi, Z., Ting, Z., Shicheng, Y., Ruoqiao, B., Nan, C., Ke, Z., and Hao, H., 2021, Air quality characteristics in Wuhan (China) during the 2020 COVID-19 pandemic. Environmental Research, 195, 110879, doi:10.1016/j.envres.2021.110879.
  12. Kim, H.C., Kim, E., Bae, C., Cho, J.H., Kim, B.-U., and Kim, S., 2017a, Regional contributions to particulate matter concentration in the Seoul metropolitan area, South Korea: Seasonal variation and sensitivity to meteorology and emissions inventory. Atmospheric Chemistry and Physysics, 17, 10315-10332, doi:10.5194/acp-17-10315-2017.
  13. Kim, H.S. and Cho, J.H., 2019, Case studies of mass concentration variation in the central-southern Korean Peninsula caused by synoptic scale transport of dust storms. The Korean Earth Science Society, 40, 414-427, doi:10.5467/JKESS.2019.40.4.414. (in Korean)
  14. Kim, H.S., Chung, Y.S., and Cho, J.H., 2017b, Long-term variations of dust storms and associated dustfall and related climate factors in Korea during 1997-2016. Air Quality, Atmosphere and Health, 10, 1269-1280, doi:10.1007/s11869-017-0513-9.
  15. Kim, T.Y., Kim, H., Yi, S.M., Cheong, J.P., and Heo, J.B., 2018, Short-term effects of ambient PM2.5 and PM2.5-10 on mortality in major cities of Korea. Aerosol and Air Quality Research, 18, 1853-1862, doi:10.4209/aaqr.2017.11.0490.
  16. Kim, Y.K., Cho, J.H., and Kim, H.S., 2021, Analysis of concentration variations of long-range transport PM10, NO2, and O3 due to COVID-19 shutdown in East Asia in 2020. The Korean Earth Science Society, 42, 278-295, doi:10.5467/JKESS.2021.42.3.278. (in Korean)
  17. Kim, Y.P. and Lee, G.W., 2018, Trend of air quality in Seoul: Policy and science. Journal of Aerosol and Air Quality Research, 18, 2141-2156, doi:10.4209/aaqr.2018.03.0081.
  18. Ko, H.J., Song, J.M., Cha, J.W., Kim, J.E., Ryoo, S.B., and Kang, C.H., 2016, Chemical composition characteristics of atmospheric aerosol in relation to haze, Asian dust and mixed haze-Asian dust episodes at Gosan Site in 2013. Journal of Korean Society for Atmospheric Environment, 32, 289-304, doi:10.5572/KOSAE.2016.32.3.289. (in Korean)
  19. Kumar, N., Park, R., Jeong, J.I., Woo, J.H., Kim, Y., Johnson, J., Yarwood, G., Kang, S., Chun, S., and Knipping, E., 2021, Contributions of international sources to PM2.5 in South Korea. Atmospheric Environment, 261, 118542, doi:10.1016/j.atmosenv.2021.118542.
  20. Kwon, S.O., Hong, S.H., Han, Y.J., Bak, S.H., Kim, J.H., Lee, M.K., London, S.J., Kim, W.J., and Kim, S.Y., 2020, Long-term exposure to PM10 and NO2 in relation to lung function and imaging phenotypes in a COPD cohort. Respiratory Research, 21, 247, doi:10.1186/s12931-020-01514-w.
  21. Liu, L., Zhang, J., Du, R., Teng, X., Hu, R., Yuan, Q., Tang, S., Ren, C., Huang, X., Xu, L., Zhang, Y., Zhang, X., Song, C., Liu, B., Lu, G., Shi, Z., and Li, W., 2021, Chemistry of atmospheric fine particles during the COVID-19 pandemic in a megacity of Eastern China. Geophysical Research Letters, 48, 1-10, doi:10.1029/2020GL091611.
  22. Lu, F., Xu, D., Cheng, Y., Ding, S., Guo, C., Jiang, X., and Zheng, X., 2015, Systematic review and meta-analysis of the adverse health effects of ambient PM2.5and PM10 pollution in the Chinese population. Environmental Research, 136, 196-204, doi:10.1016/j.envres.2014.06.029.
  23. Marsh, D.R., Mills, M.J., Kinnison, D.E., and Lamarque, J.F., 2013, Climate change from 1850 to 2005 simulated in CESM1(WACCM). Journal of Climate, 26, 7372-7391, doi:10.1175/JCLI-D-12-00558.1.
  24. Moon, K.J., Cheo, H.G., Jeon, K.H., Yang, X., Fan, M., Kim, D.G., Park, H.J., and Kim, J.S., 2018, Review on the current status and policy on PM2.5 in China. Journal of Korean Society for Atmospheric Environment, 34, 373-392, doi:10.5572/KOSAE.2018.34.3.373. (in Korean)
  25. Park, D.H., Kim, S.W., Kim, M.H., Yeo, H.D., Park, S.S., Nishizawa, T., Shimizu, A., and Kim, C.H., 2021, Impacts of local versus long-range transported aerosols on PM10 concentrations in Seoul, Korea: An estimate based on 11-year PM10 and lidar observations. Science of The Total Environment, 750, 141739, doi:10.1016/j.scitotenv.2020.141739.
  26. Peckham, S.E., Grell, G.A., McKeen, S.A., Barth, M., Pfister, G., Wiedinmyer, C., Fast, J.D., Gustafson, W.I., Ghan, S.J., Zaveri, R., Easter, R.C., Barnard, J., Chapman, E., Hewson, M., Schmitz, R., Salzmann, M., and Freitas, S., 2011, WRF-Chem version 3.3 user's guide. NOAA Technical Memorandum, 94 p.
  27. Pei, Z., Han, G., Ma, X., Su, H., and Gong, W., 2020, Response of major air pollutants to COVID-19 lockdowns in China. Journal of Science of the Total Environment, 743, 140879, doi:10.1016/j.scitotenv.2020.140879.
  28. Pope, C.A., Lefler, J.S., Ezzati, M., Higbee, J.D., Marshell, J.D., Kim, S.Y., Bechle, M., Gilliat, K.S., Vernon, S.E., Robinson, A.L., and Burnett, R.T., 2019, Mortality risk and fine particulate air pollution in a large, representative cohort of U.S. Adults. Environmental Health Perspectives, 127, 077007, doi:10.1289/EHP4438.
  29. Quinn, P.K., Collins, D.B., Grassian, V.H., Prather, K.A., and Bates, T.S., 2015, Chemistry and related properties of freshly emitted sea spray aerosol. Chemical Reviews, 115, 4383-4399, doi:10.1021/cr500713g.
  30. Russell, L.M., Sorooshian, A., Seinfeld, J.H., Albrecht, B.A., Nenes, A., Ahlm, L., Chen, Y.C., Coggon, M., Craven, J.S., Flagan, R.C., Frossard, A.A., Jonsson, H., Jung, E., Lin, J.J., Metcalf, A.R., Modini, R., Mulmenstadt, J., Roberts, G., Shingler, T., Song, S., Wang, Z., and Wonaschutz, A., 2013, Eastern Pacific emitted aerosol cloud experiment. Journal of American Meteorological Society, 94, 709-729, doi:10.1175/BAMS-D-12-00015.1.
  31. Seinfend, J.H. and Pandis, S.N., 2016, Atmospheric chemistry and physics: From air pollution to climate change. 3rd ed., John Wiley & Sons, New York.
  32. Seo, J.H., Kim, J.Y., Youn, D.O., Lee, J.Y., Kim, H.J., Lim, Y.B., Kim, Y.M., and Jin, H.C., 2017, On the multiday haze in the Asian continental outflow: The important role of synoptic conditions combined with regional and local sources. Atmospheric Chemistry and Physics, 17, 9311-9332, doi:10.5194/acp-17-9311-2017.
  33. Thunis, P., Clappier, A., Tarrason, L., Cuvelier, C., Monteiro, A., Pisoni, E., Wesseling, J., Belis, C.A., Pirovano, G., Janssen, S., Guerreiro, C., and Peduzzi, E., 2019, Source apportionment to support air quality planning: Strengths and weaknesses of existing approaches. Environment International, 130, 104825, doi:10.1016/j.envint.2019.05.019.
  34. Uno, I., Osada, K., Yumimoto, K., Wang, Z., Itahashi, S., Pan, X., Hara, Y., Yamamoto, S., and Nishizawa, T., 2017, Importance of long-range nitrate transport based on long-term observation and modeling of dust and pollutants over East Asia. Aerosol and Air Quality Research, 17, 3052-3064, doi:10.4209/aaqr.2016.11.0494.
  35. Venter, Z.S., Aunan, K., Chowdhury, S., and Lelieveld, J., 2020, COVID-19 lockdowns cause global air pollution declines. Proceedings of the National Academy of Sciences of the United States of America, 117, 18984-18990, doi:10.1073/pnas.2006853117.
  36. Vieno, M., Heal, M.R., Hallsworth, S., Famulari, D., Doherty, R.M., Dore, A.J., Tang, Y.S., Braban, C.F., Leaver, D., Sutton, M.A., and Reis, S., 2014, The role of long-range transport and domestic emissions in determining atmospheric secondary inorganic particle concentrations across the UK. Atmospheric Chemistry and Physics, 14, 8435-8447, doi:10.5194/acp-14-8435-2014.
  37. Wang, M., Liu, F., and Zheng, M., 2021, Air quality improvement from COVID-19 lockdown: evidence from China. Air Quality, Atmosphere and Health, 14, 591-604, doi:10.1007/s11869-020-00963-y.
  38. Woo, J.H., Bu, C.J., Kim, J.S., Ghim, Y.S., and Kim, Y.H., 2018, Analysis of regional and inter-annual changes of air pollutants emissions in China. Journal of Korean Society for Atmospheric Environment, 34, 87-100, doi:10.5572/KOSAE.2018.34.1.087. (in Korean)
  39. Wu, P.C. and Huang, K.F., 2021, Tracing local sources and long-range transport of PM10 in central Taiwan by using chemical characteristics and Pb isotope ratios. Scientific Report, 11, 7593, doi:10.1038/s41598-021-87051-y.
  40. Yao, L., Kong, S., Zheng, H., Chen, N., Zhu, B., Xu, K., Cao, W., Zhang, Y., Zheng, M., Cheng, M., Hu, Y., Zhang, Z., Yan, Y., Liu, D., Zhao, T., Bai, Y., and Qi, S., 2021, Co-benefits of reducing PM2.5 and improving visibility by COVID-19 lockdown in Wuhan. npj Climate and Atmospheric Science, 4, 40, doi:10.1038/s41612-021-00195-6.
  41. Yeo, M.J. and Kim, Y.P., 2019, Trends of the PM10 concentrations and high PM10 concentration cases in Korea. Journal of Korean Society for Atmospheric Environment, 35, 249-264, doi:10.5572/KOSAE.2019.35.2.249. (in Korean)
  42. Zheng, B., Zhang, Q., Geng, G., Chen, C., Shi, Q., Cui, M., Lei, Y., and He, K., 2021, Changes in China's anthropogenic emissions and air quality during the COVID-19 pandemic in 2020. Earth System Science Data, 13, 2895-2907, doi:10.5194/essd-13-2895-2021.