DOI QR코드

DOI QR Code

COVID-19가 대전지역의 도시열섬강도에 미치는 영향

Impact of COVID-19 Lockdown on Urban Heat Island Intensity in the Daejeon Metropolitan City

  • 투고 : 2022.02.03
  • 심사 : 2022.03.23
  • 발행 : 2022.04.30

초록

본 연구에서는 2019년에서 2021년까지, 매년 2월에서 5월 동안 대전광역시 6개 지점(기준지역 1곳 포함)의 기온 데이터를 바탕으로 COVID-19로 인한 인간 활동의 감소가 대전 지역의 도시열섬강도에 미친 영향에 대하여 분석하였다. 관측 지점에 따라 차이는 있으나 도시열섬강도는 COVID-19 전인 2019년에 비해 2020년과 2021년에 약 20% 이상 감소되었다. 인간 활동 감소는 야간의 도시열섬을 증가시키고 주간의 도시열섬을 감소시켰다. 그 결과 도시열섬강도의 일변동 폭은 지점에 관계없이 2019년에 비해 2020년 및 2021년 모두 약 20% 이상 증가하였다. 도시열섬강도 감소는 풍속과 같은 자연적 요인 및 사회적 거리두기 단계와는 큰 관련성이 없는 것으로 보인다. 반면에 COVID-19 이후 시행된 사회적 거리두기 및 확연히 감소된 대기오염물질과 관계가 있는 것으로 나타났으며, 특히 NO2와 가장 유의미한 상관관계를 보였다.

The effect of decreased human activity on the urban heat island intensity (UHII) was analyzed using the observed temperature data of six sites (including one reference area) in Daejeon Metropolitan City from February to May of 2019 to 2021. Depending on the observation site, UHII decreased by approximately 20% in 2020 and 2021 compared to 2019 before COVID-19. The decrease in human activity increased UHII at night and decreased it during the daytime. Consequently, UHII diurnal amplitude increased by approximately 20% in 2020 and 2021 compared to 2019, irrespective of location. The decrease in UHII did not appear to be significantly correlated with natural factors such as wind speed and social distancing steps. In contrast, UHII was correlated with social distancing and significantly reduced air pollutants after COVID-19, with the most significant correlation observed for NO2.

키워드

과제정보

본 연구는 한국과학창의재단 2021년 과학영재 창의연구(R&E) 과제의 일환으로 수행되었습니다.

참고문헌

  1. Abduldaem, S.A., Mohamed, E.H., Gordana, K., Ayad, M.F., and Harkim, S., 2021, Impact of COVID-19 lockdown upon the air quality surface urban heat island intensity over the United Arab Emirates. Science of the Total Environment, 767, 1-11.
  2. Ali, G., Abbas, S., Qamer, F.M., Wong, M.S., Rasul, G., Irteza, S.M., and Shahzad, N., 2021, Environmental impacts of shifts in energy, emissions, and urban heat island during the COVID-19 lockdown across Pakistan. Journal of Cleaner Production, 291, 125806, doi:10.1016/j.jclepro.2021.125806.
  3. Berman, J.D. and Ebisu, K., 2020, Changes in US air pollution during the COVID-19 pandemic. Science of the Total Environment, 739, 139864. https://doi.org/10.1016/j.scitotenv.2020.139864
  4. Chakraborty, T.C., Sarangi, C., and Lee, X., 2021, Reduction in human activity can enhance the urban heat island: insights from the COVID-19 lockdown. Environmental Research Letters, 16(5). https://iopscience.iop.org/article/10.1088/1748-9326/abef8e/pdf (April 12th 2021)
  5. Chow, W.T. and Roth, M., 2006, Temporal dynamics of the urban heat island of Singapore. International Journal of Climatology: A Journal of the Royal Meteorological Society, 26(15), 2243-2260. https://doi.org/10.1002/joc.1364
  6. Deilami, K., Kamruzzaman, M., and Liu, Y., 2018, Urban heat island effect: A systematic review of spatiotemporal factors, data, methods, and mitigation measures. International Journal of Applied Earth Observation and Geoinformation, 67, 30-42, https://doi.org/10.1016/j.jag.2017.12.009.
  7. Ghaffar, A., Sawaid, A., Faisal, M., Man, S., Ghulam, R., Syed, M., and Naeem, S., 2021, Environmental impacts of shifts in energy, emissions, and urban heat island during the COVID-19 lockdown across Pakistan. Journal of Cleaner Production, 291.
  8. Ghosh, S. and Das, A., 2018, Modelling urban cooling island impact of green space and water bodies on surface urban heat island in a continuously developing urban area. Modeling Earth Systems and Environment, 4(2), 501-515, doi:10.1007/s40808-018-0456-7.
  9. Environmental Protection Agency, 2008, Urban Heat Island Basics. Reducing Urban Heat Islands: Compendium of Strategies. https://www.epa.gov/heat-islands/heat-islandcompendium (January 9th 2002)
  10. He, B.J., 2018, Potentials of meteorological characteristics and synoptic conditions to mitigate urban heat island effects. Urban climate, 24, 26-33. https://doi.org/10.1016/j.uclim.2018.01.004
  11. Kim, K.J. and An, Y.S., 2017, An empirical study on the Definition and Classification Methodology of Urban Heat Island Areas. Journal of the Korean Regional Science Association, 33(2), 47-59. (in Korean) https://doi.org/10.22669/KRSA.2017.33.2.047
  12. Kim, R.H., Yeo, I.H., Yun, T.W., and Lee, D.Y., 2021, Analysis of urban island in Daejeon region according to the characteristics of the Area. The Journal of Youths in Scientific Research, 6, 253-278. (in Korean)
  13. Kim, S.B., Jung, E.H., and Kim, Y.B., 2004, A study on an installment of cool corridors reducing urban heat island phenomenon in Daegu, Korea. Journal of Nakdong River Environmental Research Institute, 9, 143-156. (in Korean)
  14. Memon, R.A. and Leung, D.Y.C., 2010, Impacts of environmental factors on urban heating. Journal of Environmental Sciences, 22(12), 1903-1909, doi:10.1016/s1001-0742(09)60337-5.
  15. Oke, T. R., 1988, The urban energy balance. Progress in Physical Geography: Earth and Environment, 12(4), 471-508, doi:10.1177/030913338801200401.
  16. Park, S.Y., 2020, COVID-19(Coronavirus Disease 2019) Outbreaks and Their Relationship with Atmospheric Concentrations of PM10 and PM2.5: A Case Study for Daegu Metropolitan City. Journal of Korean Geographical Society, 55(5), 453-465. (in Korean) https://doi.org/10.22776/KGS.2020.55.5.453
  17. Qiu, G.Y., Zou, Z., Li, X., Li, H., Guo, Q., Yan, C., and Tan, S., 2017, Experimental studies on the effects of green space and evapotranspiration on urban heat island in a subtropical megacity in China. Habitat International, 68, 30-42, doi:10.1016/j.habitatint.2017.07.009.
  18. Semonti, M. and Aniruddha, D., 2020, Correlation between Land Surface Temperature and Urban Heat Island with COVID-19 in New Delhi, India. https://www.researchsquare.com/article/rs-30416/v1 (April 12th 2021)
  19. Zhou, B.m., Rybski, D., and J.P. Kropp, 2013, On the statistics of urban heat island intensity, Geophysical Research Letters, 40, 5486-5491, doi:10.1002/2013GL057320.