DOI QR코드

DOI QR Code

Analysis of the Contribution of Biomass Burning Emissions in East Asia to the PM10 and Radiation Energy Budget in Korea

동아시아의 생체연소 배출물에 대한 한국의 미세먼지 기여도 및 복사 에너지 수지 분석

  • Lee, Ji-Hee (Department of Earth Science Education, Korean National University of Education) ;
  • Cho, Jae-Hee (Natural Science Institute, Korean National University of Education) ;
  • Kim, Hak-Sung (Department of Earth Science Education, Korean National University of Education)
  • 이지희 (한국교원대학교 지구과학교육과) ;
  • 조재희 (한국교원대학교 자연과학연구소) ;
  • 김학성 (한국교원대학교 지구과학교육과)
  • Received : 2022.03.28
  • Accepted : 2022.04.08
  • Published : 2022.04.30

Abstract

This study analyzes the impact of long-range transport of biomass burning emissions from northeastern China on the concentration of particulate matter of diameter less than 10 ㎛ (PM10) in Korea using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem). Korea was impacted by anthropogenic emissions from eastern China, dust storms from northern China and Mongolia, and biomass burning emissions from northeast China between April 4-and 7, 2020. The contributions of long-range PM10 transport were calculated by separating biomass burning emissions from mixed air pollutants with anthropogenic emissions and dust storms using the zeroing-out method. Further, the radiation energy budget over land and sea around the Korean Peninsula was analyzed according to the distribution of biomass burning emissions. Based on the WRF-Chem simulation during April 5-6, 2020, the contribution of long-range transport of biomass burning emissions was calculated as 60% of the daily PM10 average in Korea. The net heat flux around the Korean Peninsula was in a negative phase due to the influence of the large-scale biomass burning emissions. However, the contribution of biomass burning emissions was analyzed to be <45% during April 7-8, 2020, when the anthropogenic emissions from eastern China were added to biomass burning emissions, and PM10 concentration increased compared with the concentration recorded during April 5-6, 2020 in Korea. Furthermore, the net heat flux around the Korean Peninsula increased to a positive phase with the decreasing influence of biomass burning emissions.

본 연구에서는 중국 북동지역에서 발생하는 산불에 의한 생체연소 배출물이 장거리 수송으로 한국의 미세먼지 질량농도에 미치는 영향을 WRF-Chem 모델을 활용하여 분석하였다. 2020년 4월 4-7일에 한국은 중국 북동지역의 생체연소 배출물과 더불어 중국 동부지역의 인위적 배출과 중국 북부와 몽골에서 발생한 황사의 영향을 함께 받고 있었다. 인위적 배출과 황사가 혼재된 대기오염 상황에서 zero-out 방법을 활용하여 생체연소 배출물을 분류하고 미세먼지 장거리 수송 기여도를 분석하였다. 또한, 광역적인 생체연소 배출물의 분포에 따라 한반도 주변의 육지와 해양에 대한 복사 에너지 수지를 분석하였다. 2020년 4월 5-6일에는 한국의 하루평균 미세먼지 질량농도에 대한 생체연소 배출물의 장거리 수송 기여도가 60%로 산출되었다. 더불어 한반도 주변에 광역적으로 분포하는 생체연소 배출물의 영향으로 육지와 해양의 순 복사 플럭스는 음의 값을 나타내었다. 그러나 2020년 4월 7-8일에는 중국 동부지역에서 발생한 인위적 오염물질이 생체연소 배출물에 더해지면서 한국의 미세먼지 질량농도는 4월 5-6일보다 증가하였으나 생체연소 배출물의 기여도는 45% 이하로 감소하였다. 또한, 생체연소 배출물의 영향이 줄어들면서 순 복사 플럭스는 양의 값을 나타내었다.

Keywords

References

  1. Adams, M.A. and Shen, Z.H., 2015, Introduction to the characteristics, impacts and management of forest fire in China. Forest Ecology and Management, 356, 1, doi:10.1016/j.foreco.2015.09.019.
  2. Che, H., Wang, Y., Sun, J., Zhang, X., Zhang, X., and Guo, J., 2013, Variation of aerosol optical properties over the Taklimakan Desert in China. Aerosol and Air Quality Research, 13, 777-785, doi:10.4209/aaqr.2012.07.0200.
  3. Chen, F., Mitchell, K., Schaake, J., Xue, Y., Pan, H.L., Koren, V., Duan, Q.Y., Ek, M., and Betts, A., 1996, Modeling of land surface evaporation by four schemes and comparison with FIFE observations. Journal of Geophysical Research, 101, 7251-7268, doi:10.1029/95jd02165.
  4. Chen, J., Li, C., Ristovski, Z., Milic, A., Gu, Y., Islam, M.S., Wang, S., Hao, J., Zhang, H., He, C., Guo, H., Fu, H., Miljevic, B., Morawska, L., Thai, P., Lam, Y.F., Pereira, G., Ding, A., Huang, X., and Dumka, U.C., 2017, A review of biomass burning: Emissions and impacts on air quality, health and climate in China. Science of The Total Environment, 579, 1000-1034, doi:10.1016/j.scitotenv.2016.11.025.
  5. Cho, J.H., Kim, H.S., and Chung, Y.S., 2021, Spatio-temporal changes of PM10 trends in South Korea caused by East Asian atmospheric variability. Air Quality, Atmosphere and Health, 14, 1001-1016, doi:10.1007/s11869-021-00995-y.
  6. Cho, J.H., Kim H.S., and Yoon, M.B., 2022, The influence of atmospheric blocking on regional PM10 aerosol transport to South Korea during February-March of 2019. Atmospheric Environment, 277, 119056, doi:10.1016/j.atmosenv.2022.119056.
  7. Colarco, P.R., Schoeberl, M.R., Doddridge, B.G., Marufu, L.T., Torres, O., and Welton, E.J., 2004, Transport of smoke from Canadian forest fires to the surface near Washinton, D.C.: Injection height, entrainment, and optical properties. Journal of Geophysical Research: Atmospheres, 109, D06203, doi:10.1029/2003JD004248.
  8. Dao, X., Wang, Z., Lv, Y., Teng, E., Zhang, L., and Wang, C., 2014, Chemical characteristics of water-soluble ions in particulate matter in three metropolitan areas in the north China plain. PLoS ONE, 9, e113831, doi:10.1371/journal.pone.0113831.
  9. Dong, X., Fu, J.S., Huang, K., Lin, N.H., Wang, S.H., and Yang, C.E., 2018, Analysis of the co-existence of long-range transport biomass burning and dust in the subtropical west Pacific region. Scientific Reports, 8, 8962, doi:10.1038/s41598-018-27129-2.
  10. Emmons, L.K., Walters, S., Hess, P.G., Lamarque, J.F., Pfister, G.G., Fillmore, D., Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C., Baughcum, S.L., and Kloster, S., 2010, Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geoscientific Model Development, 3, 43-67, doi:10.5194/gmd-3-43-2010.
  11. Grell, G.A. and Freitas, S.R., 2013, A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmospheric Chemistry and Physics, 14, 5233-5250, doi:10.5194/acp-14-5233-2014.
  12. Guenther, A.B., Jiang, X., Heald, C.L., Sakulyanontvittaya, T., Duhl, T., Emmons, L.K., Wang, X., 2012, The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geoscientific Model Development, 5, 1471-1492, doi:10.5194/gmd-5-1471-2012.
  13. Heald, C.L., Ridley, D.A., Kroll, J.H., Barrett, S.R.H., Cady-Pereira, K.E., Alvarado, M.J., and Holmes, C.D., 2014, Contrasting the direct radiative effect and direct radiative forcing of aerosols. Atmospheric Chemistry and Physics, 14, 5513-5527, doi:10.5194/acp-14-5513-2014.
  14. Hong, S.Y., Noh, Y., and Dudhia, J., 2006, A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Monthly Weather Review, 134, 2318-2341, doi:10.1175/MWR3199.1.
  15. Huang, M., Huang, B., and Huang, H.L.A., 2017, Acceleration of the WRF Monin-Obukhov-Janjic Surface Layer Parameterizaion Scheme on an MIC-Based Platform for Weather Forecast. IIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10, 10, doi:10.1109/JSTARS.2017.2725743.
  16. Iacono, M.J., Delamere, J.S., Mlawer, E.J., Shephard, M.W., Clough, S.A., and Collins, W.D., 2008, Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. Jornal of Geophysical Research, 113, D13, doi:10.1029/2008JD009944.
  17. Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Dentener, F., Muntean, M., Pouliot, G., Keating, T., Zhang, Q., Kurokawa, J., Wankmuller, R., Denier van der Gon, H., Kuenen, J.J.P., Klimont, Z., Frost, G., Darras, S., Koffi, B., and Li, M., 2015, HTAP-v2.2: A mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution. Atmospheric Chemistry and Physics, 15, 11411-11432, doi:10.5194/acp-15-11411-2015.
  18. Jee, J.B., Lee, K.T., Lee, K.H., and Zo, I.S., 2020, Development of GK-2A AMI aerosol detection algorithm in the East-Asia region using Himawari-8 AHI Data. Asia-Pacific Journal of Atmospheric Sciences, 56, 207-223, doi:10.1007/s13143-019-00156-3.
  19. Justice, C.O., Townshend, J.R.G., Vermote, E.F., Masuoka, E., Wolfe, R.E., Saleous, N., Roy, D.P., and Morisette, J.T., 2002, An overview of MODIS Land data processing and product status. Remote Sensing of Environment, 83, 3-15, doi:10.1016/S0034-4257(02)00084-6.
  20. Kato, S., Rose, F.G., Rutan, D.A., Thorsen, T.J., Loeb, N.G., Doelling, D.R., Huang, X., Smith, W.L., Su, W., and Ham, S.H., 2018, Surface irradiances of edition 4.0 Clouds and the Earth's Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) data product. Journal of Climate, 31, 4501-4527, doi:10.1175/JCLI-D-17-0523.1.
  21. Kim, C., Park, S., Kim, Y., Chang, L., Song, S., Moon, Y., and Song, C., 2012, A numerical study on indicators of long-range transport potential for anthropogenic particulate matters over northeast Asia. Atmospheric environment, 58, 35-44, doi:10.1016/j.atmosenv.2011.11.002.
  22. Kim, H.C., Kim, E., Bae, C., Cho, J.H., Kim, B.U., and Kim, S., 2017a, Regional contributions to particulate matter concentration in the Seoul metropolitan area, South Korea: seasonal variation and sensitivity to meteorology and emissions inventory. Atmospheric Chemistry and Physics, 17, 10315-10332, doi:10.5194/acp-17-10315-2017.
  23. Kim, H.S., Chung, Y.S., and Cho, J.H., 2017b, Long-term variations of dust storms and associated dustfall and related climate factors in Korea during 1997-2016. Air Quality, Atmosphere and Health, 50, 191-200, doi:10.1007/s11869-017-0513-9.
  24. Knote, C., Hodzic, A., Jimenez, J.L., Volkamer, R., Orlando, J.J., Baidar, S., Brioude, J., Fast, J., Gentner, D.R., Goldstein, A.H., Hayes, P.L., Kinghton, W.B., Oetjen, H., Setyan, A., Stark, H., Thalman, R., Tyndall, G., Washenfelder, R., Waxman, E., and Zhang, Q., 2014, Simulation of semi-explicit mechanisms of SOA formation from glyoxal in aerosol in a 3-D model. Atmospheric Chemistry and Physics, 14, 6213-6239, doi:10.5194/acp-14-6213-2014.
  25. Laprise, R., 1992, The Euler equations of motion with hydrostatic pressure as an independent variable. Monthly Weather Review, 120, 197-207, doi:0.1175/1520-0493(1992)120<0197:TEEOMW>2.0.CO;2. https://doi.org/10.1175/1520-0493(1992)120<0197:TEEOMW>2.0.CO;2
  26. Lavoue, D., Liousse, C., Cachier, H., Stocks, B.J., and Goldmmer, J.G., 2000, Modeling of carbonaceous particles emitted by boreal and temperate wildfires at northern latiudes. Journal of Geophysical Research: Atmospheres, 105, 26871-26890, doi:10.1029/2000JD900180.
  27. Lee, P., McQueen, J., Stajner, I., Huang, J., Pan, L., Tong, D., Kim, H., Tang, Y., Kondragunta, S., Ruminski, M., Lu, S., Rogers, E., Saylor, R., Shafran, P., Huang, H., Gorline, J., Upadhayay, S., and Artz, R., 2017, NAQFC Developmental forecast guidance for fine particulate matter (PM2.5). Weather and Forecasting, 32, 343-360, doi:10.1175/WAF-D-15-0163.1.
  28. Lee, S., Hong, J., Cho, Y., Choi, M., Kim, J., Park, S.S., Ahn, J.Y., Kim, S.K., Moon, K.J., Eck, T.F., Holben, B.N. and Koo, J.H., 2018, Characteristics of classified aerosol types in South Korea during the MAPS-Seoul campaign. Aerosol and Air Quality Research, 18, 2195-2206, doi:10.4209/aaqr.2017.11.0474.
  29. Lee, S., Kim, M., Kim, S.Y., Lee, D.W., Lee, H., Kim, J., Le, S., and Liu, Y.. 2021, Assessment of long-range transboundary aerosols in Seoul, South Korea from Geostationary Ocean Color Imager (GOCI) and ground-based observations. Environmental Pollution, 269, 115924, doi: 10.1016/j.envpol.2020.115924.
  30. LeGrand, S.L., Polashenski, C., Letcher, T.W., Creighton, G.A., Peckham, S.E., and Cetola, J.D., 2019, The AFWA dust emission scheme for the GOCART aerosol model in WRF-Chem v3.8.1. Geoscientific Model Development, 12, 131-166, doi:10.5194/gmd-12-131-2019.
  31. Li, J., Wang, Z., Luo, G., Luo, G., Sun, Y., and Wang, Y., 2012, Mixing of Asian mineral dust with anthropogenic pollutants over East Asia: a model case study of a super-dust storm in March 2010. Atmospheric Chemistry and Physics, 12, 7591-7607, doi:10.5194/acp12-7591-2012, 2012.
  32. Lin, C.Y., Zhao, C., Liu, X., Lin, N.H., and Chen, W.N., 2014, Modeling of long-range transport of Southeast Asia biomass-burning aerosols to Taiwan and their radiative forcings over East Asia. Tellus B: Chemical and Physical Meteorology, 66, 23733, doi: 10.3402/tellusb.v66.23733.
  33. Lyu, Y.L., Liu, L.Y., Guo, L.L., Yang, Y.Y., Qu, Z.Q., Hu, X., and Zhang, G.M., 2017, Deposited atmospheric dust as influenced by anthropogenic emissions in northern China. Environmental Monitoring and Assessment, 189, 390, doi:10.1007/s10661-017-6093-1.
  34. Madronich, S., 1987, Photodissociation in the atmosphere1. Actinic flux and the effects of ground reflections and clouds. Journal of Geophysical Research, 92, 9740-9752, doi:10.1029/JD092iD08p09740.
  35. McClure, C.D. and Jaffe, D.A., 2018, US particulate matter air quality improves except in wildfire-prone areas. Earth, Atmospheric, and Planetary Sciences, 115, 7901-7906, doi: 10.1073/pnas.1804353115.
  36. Morrison, H., McCoy, R.B., Klein, S.A., Xie, S., Luo, Y., Avramov, A., Chen, M., Cole, J.N.S., Falk, M., Foster, M.J., del Genio, A.D., Harrington, J.Y., Hoose, c., Khairoutdinov, M.F., Larson, V.E., Liu, X., McFarquhar, G.M., Poellot, M.R., von Salzen, K., Shipway, B.J., Shupe, M.D., Sud, Y.C., Turner, D.D., Veron, D.E., Walker, G.K., Wang, Z., Wolf, A.B., Xu, K.M., Yang, F., and Zhang, G., 2009, Intercomparison of model simulations of mixed-phase clouds observed during the ARM mixed-phase arctic cloud experiment, ?: Multilayer cloud. Quarterly Journal of the Royal Meteorological Society, 135, 1003-1019, doi:10.1002/qj.415.
  37. Murillo, J.H., Roman, S.R., Marin, J.F., Ramos, A.C., Jimenez, S.B., Gonzalez, B.C., and Baumgardner, D., 2013, Chemical characterization and source apportionment of PM10 and PM2.5 in the metropolitan area of Costa Rica, Central America. Atmospheric Pollution Research, 4, 181-190, doi:10.5094/APR.2013.018.
  38. Pun, V.C., Yu, I.T., Qiu, H., Ho, K.F., Sun, Z., Louie, P.K., Wong, T.W., and Tian, L., 2014, Short-term associations of cause-specific emergency hospitalizations and particulate matter chemical components in Hong Kong. American Journal of Epidemiology, 179, 1086-95, doi:10.1093/aje/kwu026.
  39. Remer, L.A., Kaufman, Y.J., Tanre, D., Mattoo, S., Chu, D.A., Martins, J.V., Li, R.R., Ichoku, C., Levy, R.C., Kleidman, R.G., Eck, T.F., Vermote, E., and Holben, B.N., 2005, The MODIS aerosol algorithm, products, and validation. Journal of the Atmospheric Sciences, 62, 947-973, doi:doi.org/10.1175/JAS3385.1.
  40. Ruijgrok, K., 1995, Dry deposition of acidifying and alkaline particles to forests: model and experimental results compared. Studies in Environmental Science, 64, 431-438, doi:10.1016/S0166-1116(06)80312-2.
  41. Saidou Chaibou, A.A., Ma, X., and Sha, T., 2020, Dust radiative forcing and its impact on surface energy budget over West Africa. Scientific Reports, 10, 12236, doi:10.1038/s41598-020-69223-4.
  42. Stieger, B., Spindler, G., Fahlbusch, B., Muller, K., Gruner, A., Poulain, L., Thoni, L., Seitler, E., Wallasch, M., and Herrmann, H., 2018, Measurements of PM10 ions and trace gases with the online system MARGA at the research station Melpitz in Germany - A five-year study. Journal of Atmospheric Chemistry, 75, 33-70, doi:10.1007/s10874-017-9361-0.
  43. Wiedinmyer, C., Akagi, S.K., Yokelson, R.J., Emmons, L.K., Al-Saadi, J., Orlando, J.J., Soja, A.J., 2011, The Fire INventory from NCAR (FINN): A high resolution global model to estimate the emissions from open burning. Geoscientific Model Development, 4, 625-641, doi:10.5194/gmd-4-625-2011.
  44. Wotawa, G. and Trainer, M., 2000, The influence of Canadian forest fires on pollutant concentrations in the United States. Science, 288, 324-328, doi:10.1126/science.288.5464.324.
  45. Wu, J., Kong, S., Wu, F., Cheng, Y., Zheng, S., Qin, S., Liu, X., Yan, Q., Zheng, H., Zheng, M., Yan, Y., Liu, D., Ding, S., Zhao, D., Shen, G., Zhao, T., and Qi, S., 2020, The moving of high emission for biomass burning in China: View from multi-year emission estimation and human-driven forces. Environment International, 142, 105812, doi:10.1016/j.envint.2020.105812.
  46. Xie, Y., Li, Z., Li, D., Xu, H., and Li, K., 2015, Aerosol optical and microphysical properties of four typical sites of SONET in China based on remote sensing measurements. Remote Sensing, 7, 9928-9953, doi:10.3390/rs70809928.
  47. Yang, G., Zhao, H., Tong, D.Q., Xiu, A., Zhang, X., and Gao, C., 2020, Impacts of post-harvest open biomass burning and burning ban policy on severe haze in the Northeastern China. Science of the Total Environment, 716, 136517, doi:10.1016/j.scitotenv.2020.136517.
  48. Yin, S., 2020, Biomass burning spatiotemporal variations over South and Southeast Asia. Environment International, 145, 106153, doi: 10.1016/j.envint.2020.106153.
  49. Yu, J., Che, H., Chen, Q., Xia, X., Zhao, H., Wang, H., Wang, Y., Zhang, X., and Shi, G., 2015, Investigation of aerosol optical depth (AOD) and Angstrom Exponent over the desert region of Northwestern China based on measurements from the China Aerosol Remote Sensing Network (CARSNET). Aerosol and Air Quality Research, 15, 2024-2036, doi:10.4209/aaqr.2014.12.0326.
  50. Zhang, M.H., Cess, R.D., and Xie, S.C., 1996, Relationships between sea surface temperatures and cloud-radiative-forcings over the entire tropical oceans. Journal of Climate, 9, 1374-1384, http://www.jstor.org/stable/26201324. https://doi.org/10.1175/1520-0442(1996)009<1374:RBCRFA>2.0.CO;2
  51. Zhang, X., Zhao, X., Ji, G., Ying, R., Shan, Y., and Lin, Y., 2019, Seasonal variations and source apportionment of water-soluble inorganic ions in PM2.5 in Nanjing, a megacity in southeastern China. Journal of Atmospheric Chemistry, 76, 73-88, doi:10.1007/s10874-019-09388-z.
  52. Zheng, Y., Kang, B., Zhang, D., Zhao, C., Liu, C., Shu, Z., Sun, Y., Huang, B., Chai, R., Zhao, T., Zhang, X., Che, H., Xia, X., Wang, Y., Zhao, H., Wang, H., Estelles, V., An, L., Gui, K., and Sun, T., 2018, A comparative analysis of aerosol microphysical, optical and radiative properties during the Spring Festival holiday over Beijing and surrounding regions. Aerosol and Air Quality Research, 18, 1774-1787, doi:10.4209/aaqr.2017.10.0396.