Acknowledgement
This research work was supported by the Science Engineering Research Board (SERB), Department of Science & Technology (DST), Government of India, File No: CRG/2021/005720.
References
- Arunvinthan, S. and Nadaraja Pillai, S. (2019), "Aerodynamic characteristics of unsymmetrical aerofoil at various turbulence intensities", Chinese J. Aeronautic., 32(11), 2395-2407. https://doi.org/10.1016/j.cja.2019.05.014.
- Betterton, J. and Hackett, K. (2000), "Laser doppler anemometry investigation on sub boundary layer vortex generators for flow control", Appl. Laser, 1-13. http://ltces.dem.ist.utl.pt/lxlaser/lxlaser2000/papers/pdf/08_2.pdf.
- Bur, R., Coponet, D. and Carpels, Y. (2009), "Separation control by vortex generator devices in a transonic channel flow", Shock Waves, 19(6), 521-530. https://doi.org/10.1007/s00193-009-0234-6.
- Chen, C., Seele, R. and Wygnanski, I. (2012), "Separation and circulation control on an elliptical airfoil by steady blowing", AIAA J., 50(10), 2235-2247. https://doi.org/10.2514/1.J051538.
- Dhiliban, A., Meena, P., Narasimhan, P.S., Vivek, M., Pillai, S.N. and Parammasivam, K.M. (2013), "Aerodynamic performance of rear roughness Aerofoils", In Proc. 8th Asia-Pacific Conference on Wind Engineering, 193-200. https://doi.org/10.3850/978-981-07-8012-8_252.
- Fouatih, O.M., Medale, M., Imine, O. and Imine, B. (2016), "Design optimization of the aerodynamic passive flow control on NACA 4415 airfoil using vortex generators", Europ. J. Mech.-B/Fluids, 56, 82-96. https://doi.org/10.1016/j.euromechflu.2015.11.006.
- Ganesh, N., Arunvinthan, S. and Nadaraja pillai, S. (2019), "Effect of surface blowing on aerodynamic characteristics of tubercled straight wing", Chinese J. Aeronaut., 32(5), 1111-1120. https://doi.org/10.1016/j.cja.2019.02.006.
- Gao, L., Zhang, H., Liu, Y. and Han, S. (2015), "Effects of vortex generators on a blunt trailing-edge airfoil for wind turbines", Renew. Energy, 76, 303-311. https://doi.org/10.1016/j.renene.2014.11.043.
- Genc, M.S., Kaynak, u. And Yapici, H. (2011), "Performance of transition model for predicting low Re aerofoil flows without/with single and simultaneous blowing and suction", Europ. J. Mech.-B/Fluids, 30(2), 218-235. https://doi.org/10.1016/j.euromechflu.2010.11.001.
- Huang, L., Huang, P.G., LeBeau, R.P. and Hauser, T. (2004), "Numerical study of blowing and suction control mechanism on NACA0012 airfoil", J. Aircraft, 41(5), 1005-1013. https://doi.org/10.2514/1.2255.
- James, S.E., Suryan, A., Sebastian, J.J., Mohan, A. and Kim, H.D. (2018), "Comparative study of boundary layer control around an ordinary airfoil and a high lift airfoil with secondary blowing", Comput. Fluids, 164, 50-63. https://doi.org/10.1016/j.compfluid.2017.03.012.
- Jiao, Y. and Lu, Y. (2015), "Parameter optimization research on lift-enhancing of multi-element airfoil using air-blowing", Procedia Eng., 99, 73-81. https://doi.org/10.1016/j.proeng.2014.12.510.
- Li, Q.A., Maeda, T., Kamada, Y., Murata, J., Kawabata, T. and Furukawa, K. (2014), "Analysis of aerodynamic load on straight-bladed vertical axis wind turbine", J. Thermal Sci., 23(4), 315-324. https://doi.org/10.1007/s11630-014-0712-8.
- Lin, J.C. (2002), "Review of research on low-profile vortex generators to control boundary-layer separation", Progress Aeros. Sci., 38(4-5), 389-420. https://doi.org/10.1016/S0376-0421(02)00010-6.
- Maeda, T., Kamada, Y., Murata, J., Furukawa, K. and Yamamoto, M. (2015), "Effect of number of blades on aerodynamic forces on a straight-bladed Vertical Axis Wind Turbine", Energy, 90, 784-795. https://doi.org/10.1016/j.energy.2015.07.115.
- Shan, H., Jiang, L., Liu, C., Love, M. and Maines, B. (2008), "Numerical study of passive and active flow separation control over a NACA0012 airfoil", Comput. Fluids, 37(8), 975-992. https://doi.org/10.1016/j.compfluid.2007.10.010.
- Shehata, A.S., Xiao, Q., Saqr, K.M., Naguib, A. and Alexander, D. (2017), "Passive flow control for aerodynamic performance enhancement of airfoil with its application in Wells turbine-under oscillating flow condition", Ocean Eng., 136, 31-53. https://doi.org/10.1016/j.oceaneng.2017.03.010.
- Sundaresan, A., Arunvinthan, S., Pasha, A.A. and Pillai, S.N. (2021), "Effect of Ice accretion on the aerodynamic characteristics of wind turbine blades", Wind Struct., 32(3), 205-217. https://doi.org/10.12989/was.2021.32.3.205.
- Tao, W.U., Bifeng, S.O.N.G., Wenping, S.O.N.G., Wenqing, Y.A. N.G. and Zhonghua, H.A.N. (2020), "Aerodynamic performance enhancement for flapping airfoils by co-flow jet", Chinese J. Aeronaut, 33(10), 2535-2554. https://doi.org/10.1016/j.cja.2020.05.010.
- Wang, H., Zhang, B., Qiu, Q. and Xu, X. (2017), "Flow control on the NREL S809 wind turbine airfoil using vortex generators", Energy, 118, 1210-1221. https://doi.org/10.1016/j.energy.2016.11.003.
- Wong, C. and Kontis, K. (2007), "Flow control by spanwise blowing on a NACA 0012", J. Aircraft, 44(1), 337-340. https://doi.org/10.2514/1.25227.
- Xue, S., Johnson, B., Chao, D., Sareen, A. and Westergaard, C. (2010), "Advanced aerodynamic modeling of vortex generators for wind turbine applications", Europ. Wind Energy Conference (EWEC), Warsaw Poland.
- Yang, K., Zhang, L. and Xu, J. (2010), "Simulation of aerodynamic performance affected by vortex generators on blunt trailing-edge airfoils", Sci. China Series E: Technol. Sci., 53(1), 1-7. https://doi.org/10.1007/s11431-009-0425-5.
- Yousefi, K., Saleh, R. and Zahedi, P. (2014), "Numerical study of blowing and suction slot geometry optimization on NACA 0012 airfoil", J. Mech. Sci. Technol., 28(4), 1297-1310. https://doi.org/10.1007/s12206-014-0119-1.
- Zhen, T.K., Zubair, M. and Ahmad, K.A. (2011), "Experimental and numerical investigation of the effects of passive vortex generators on Aludra UAV performance", Chinese J. Aeronaut., 24(5), 577-5583. https://doi.org/10.1016/S1000-9361(11)60067-8.