DOI QR코드

DOI QR Code

Frequency Dependent Magnetoelectric Responses in [0.948 Na0.5K0.5NbO3-0.052 LiSbO3]-[Co1-xZnxFe2O4] Particulate Composites

  • Choi, Moon Hyeok (Department of Chemical Engineering (BK21 FOUR), Dong-A University) ;
  • Noh, Byung Il (Department of Chemical Engineering (BK21 FOUR), Dong-A University) ;
  • Yun, Woosik (Department of Chemical Engineering (BK21 FOUR), Dong-A University) ;
  • Jung, Chaewon (Department of Chemical Engineering (BK21 FOUR), Dong-A University) ;
  • Yang, Su Chul (Department of Chemical Engineering (BK21 FOUR), Dong-A University)
  • Received : 2022.03.07
  • Accepted : 2022.03.30
  • Published : 2022.05.01

Abstract

Magnetoelectric (ME) properties of 3-0 type particulate composites have been investigated with respect to application features for reliable magnetic sensitivity and magnetically-induced output voltage. In order to figure out the magnetoelectric characteristics in the ME composites, frequency dependent ME responses were studied from [0.948 Na0.5K0.5NbO3-0.052 LiSbO3]-[Co1-xZnxFe2O4] (NKNLS)/Co1-xZnxFe2O4 (CZFO, x=0, 0.1, and 0.2). As a result, the maximal αME of 23.15 mV/cm·Oe was achieved from the NKNLS-CZFO (xZn = 0.1) composites at resonance frequency of 315 kHz and Hdc = 0 Oe. From the frequency dependent ME responses, it is clearly described that the self-biased ME composites can be used for applications as both magnetic sensors and energy harvesters, respectively.

Keywords

Acknowledgement

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2019R1F1A1056786).

References

  1. N. Ortega, A. Kumar, J. F. Scott, and R. S. Katiyar, J. Phys.: Condens. Matter, 27, 504002 (2015). [DOI: https://doi.org/10.1088/0953-8984/27/50/504002]
  2. S. Marauska, R. Jahns, H. Greve, E. Quandt, R. Knochel, and B. Wagner, J. Micromech. Microeng., 22, 065024 (2012). [DOI: https://doi.org/10.1088/0960-1317/22/6/065024]
  3. W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature, 442, 759 (2006). [DOI: https://doi.org/10.1038/nature05023]
  4. S. Liu, S. Yan, H. Luo, L. He, J. He, Z. Hu, S. Huang, and L. Deng, Ceram. Int., 44, 3712 (2018). [DOI: https://doi.org/10.1016/j.ceramint.2017.11.151]
  5. M. Fiebig, J. Phys. D: Appl. Phys., 38, R123 (2005). [DOI: https://doi.org/10.1088/0022-3727/38/8/R01]
  6. S. He, G. Liu, J. Xu, J. Yang, Y. Chen, S. Kang, S. Yan, and L. Mei, Mater. Lett., 89, 159 (2012). [DOI: https://doi.org/10.1016/j.matlet.2012.08.096]
  7. J. Ma, C. Xin, J. Ma, Q. Zhang, and C. Nan, Sci. Bull., 61, 378 (2016). [DOI: https://doi.org/10.1007/s11434-016-1002-5]
  8. E. Lage, C. Kirchhof, V. Hrkac, L. Kienle, R. Jahns, R. Knochel, E. Quandt, and D. Meyners, Nat. Mater., 11, 523 (2012). [DOI: https://doi.org/10.1038/nmat3306]
  9. S. K. Mandal, G. Sreenivasulu, V. M. Petrov, and G. Srinivasan, Appl. Phys. Lett., 96, 192502 (2010). [DOI: https://doi.org/10.1063/1.3428774]
  10. S. C. Yang, C. W. Ahn, K. H. Cho, and S. Priya, J. Am. Ceram. Soc., 94, 3889 (2011). [DOI: https://doi.org/10.1111/j.1551-2916.2011.04580.x]
  11. T. Li, D. Ma, K. Li, and Z. Hu, J. Alloys Compd., 747, 558 (2018). [DOI: https://doi.org/10.1016/j.jallcom.2018.03.045]
  12. C. Tang, C. Lu, H. Gao, and G. Fu, Appl. Phys. Lett., 111, 173504 (2017). [DOI: https://doi.org/10.1063/1.4990576]
  13. M. Kumari, C. Prakash, and R. Chatterjee, J. Magn. Magn. Mater., 429, 60 (2017). [DOI: https://doi.org/10.1016/j.jmmm.2017.01.010]
  14. H. J. Lee, S. Y. Jeong, C. R. Cho, and C. H. Park, Appl. Phys. Lett., 81, 4020 (2002). [DOI: https://doi.org/10.1063/1.1517405]
  15. S. K. Gore, S. S. Jadhav, V. V. Jadhav, S. M. Patange, M. Naushad, R. S. Mane, and K. H. Kim, Sci. Rep., 7, 2524 (2017). [DOI: https://doi.org/10.1038/s41598-017-02784-z]
  16. V. G. Patil, S. E. Shirsath, S. D. More, S. J. Shukla, and K. M. Jadhav, J. Alloys Compd., 488, 199 (2009). [DOI: https://doi.org/10.1016/j.jallcom.2009.08.078]
  17. A. Hassadee, T. Jutarosaga, and W. Onreabroy, Procedia Eng., 32, 597 (2012). [DOI: https://doi.org/10.1016/j.proeng.2012.01.1314]
  18. S. Anjum, R. Khurram, F. Bashir, and H. Nazli, Mater. Today: Proc., 2, 5515 (2015). [DOI: https://doi.org/10.1016/j.matpr.2015.11.079]
  19. K. Praveena, K. Sadhana, H. L. Liu, and S. R. Murthy, J. Mater. Sci.: Mater. Electron., 27, 12680 (2016). [DOI: https://doi.org/10.1007/s10854-016-5402-8]
  20. M. Tachiki, Prog. Theor. Phys., 23, 1055 (1960). [DOI: https://doi.org/10.1143/PTP.23.1055]
  21. I. C. Nlebedim, K. W. Dennis, R. W. McCallum, and D. C. Jiles, J. Appl. Phys., 115, 17A519 (2014). [DOI: https://doi.org/10.1063/1.4866230]
  22. J. Zhang, P. Li, Y. Wen, W. He, A. Yang, and C. Lu, Smart Mater. Struct., 23, 095028 (2014). [DOI: https://doi.org/10.1088/0964-1726/23/9/095028]