DOI QR코드

DOI QR Code

고압 중수소 열처리에 의한 MOSFETs의 특성 개선에 대한 연구

Improvement of Electrical Characteristics of MOSFETs Using High Pressure Deuterium Annealing

  • Jung, Dae-Han (School of Electronics Engineering, Chungbuk National University) ;
  • Ku, Ja-Yun (School of Electronics Engineering, Chungbuk National University) ;
  • Wang, Dong-Hyun (School of Electronics Engineering, Chungbuk National University) ;
  • Son, Young-Seo (School of Electronics Engineering, Chungbuk National University) ;
  • Park, Jun-Young (School of Electronics Engineering, Chungbuk National University)
  • 투고 : 2022.01.24
  • 심사 : 2022.02.07
  • 발행 : 2022.05.01

초록

High pressure deuterium (HPD) annealing is an advancing technology for the fabrication of modern semiconductor devices. In this work, gate-enclosed FETs are fabricated on a silicon substrate as test vehicles. After a cycle for the HPD annealing, the device parameters such as threshold voltage (VTH), subthreshold swing (SS), on-state current (ION), off-state current (IOFF), and gate leakage (IG) were measured and compared depending on the HPD. The HPD annealing can passivate the dangling bonds at Si-SiO2 interfaces as well as eliminate the bulk trap in SiO2. It can be concluded that adding the HPD annealing as a fabrication process is very effective in improving device reliability, performance, and variability.

키워드

과제정보

This work was partially supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MIST) (No.2020M3H2A076786 and 2021R1F1A1049456).

참고문헌

  1. C. Hu, Proc. IEEE, 81, 682 (1993). [DOI: https://doi.org/10.1109/5.220900]
  2. E. Valtonen, "Space Weather Effects on Technology", in Space Weather (Springer, Berlin, Germany, 2005), pp. 241-273. [DOI: https://doi.org/10.1007/978-3-540-31534-6_8]
  3. T. R. Oldham and F. B. McLean, IEEE Trans. Nucl. Sci., 50, 483 (2003). [DOI: https://doi.org/10.1109/TNS.2003.812927]
  4. X. Fan, P. Lee, W. Lee, B. Zhang, X. Xie, G. Wang, B. Hu, and Y. Zhai, J. Semicond., 32, 084002 (2011). [DOI: https://doi.org/10.1088/1674-4926/32/8/084002]
  5. W. F. Clark, T. G. Ference, T. B. Hook, K. M. Watson, S. W. Mittl, and J. S. Burnham, IEEE Electron Device Lett., 20, 48 (1999). [DOI: https://doi.org/10.1109/55.737570]
  6. J. W. Lyding, K. Hess, and I. C. Kizilyalli, Appl. Phys. Lett., 68, 2526 (1996). [DOI: https://doi.org/10.1063/1.116172]
  7. J. M. Yu, J. Y. Park, T. J. Yoo, J. K. Han, D. H. Yun, G. B. Lee, J. Hur, B. H. Lee, S. Y. Kim, B. H. Lee, and Y. K. Choi, IEEE Trans. Electron Devices, 67, 3903 (2020). [DOI: https://doi.org/0.1109/TED.2020.3008882] https://doi.org/10.1109/TED.2020.3008882
  8. I. C. Kizilyalli, J. W. Lyding, and K. Hess, IEEE Electron Device Lett., 18, 81 (1997). [DOI: https://doi.org/10.1109/55.556087]
  9. L. Breuil, J. G. Lisoni, R. Delhougne, C. L. Tan, J. Van Houdt, G. Van den bosch, and A. Furnemont, Proc. 2016 IEEE 8th International Memory Workshop (IMW) (IEEE, Paris, France, 2016) pp. 1-4. [DOI: https://doi.org/10.1109/IMW.2016.7495277]