DOI QR코드

DOI QR Code

Analysis on Subthreshold Swing of Asymmetric Junctionless Double Gate MOSFET for Parameters for Gaussian Function

가우스 함수의 파라미터에 따른 비대칭형 무접합 이중 게이트 MOSFET의 문턱전압 이하 스윙 분석

  • Jung, Hakkee (Department of Electronic Engineering, Kunsan National University)
  • Received : 2021.12.13
  • Accepted : 2022.01.08
  • Published : 2022.05.01

Abstract

The subthreshold swing (SS) of an asymmetric junctionless double gate (AJLDG) MOSFET is analyzed by the use of Gaussian function. In the asymmetric structure, the thickness of the top/bottom oxide film and the flat-band voltages of top gate (Vfbf) and bottom gate (Vfbb) could be made differently, so the change in the SS for these factors is analyzed with the projected range and standard projected deviation which are parameters for the Gaussian function. An analytical subthreshold swing model is presented from the Poisson's equation, and it is shown that this model is in a good agreement with the numerical model. As a result, the SS changes linearly according to the geometric mean of the top and bottom oxide film thicknesses, and if the projected range is less than half of the silicon thickness, the SS decreases as the top gate oxide film is smaller. Conversely, if the projected range is bigger than a half of the silicon thickness, the SS decreases as the bottom gate oxide film is smaller. In addition, the SS decreases as Vfbb-Vfbf increases when the projected range is near the top gate, and the SS decreases as Vfbb-Vfbf decreases when the projected range is near the bottom gate. It is necessary that one should pay attention to the selection of the top/bottom oxide thickness and the gate metal in order to reduce the SS when designing an AJLDG MOSFET.

Keywords

References

  1. T. B. Hook, Joule, 2, 1 (2018). [DOI: https://doi.org/10.1016/j.joule.2017.10.014]
  2. H. H. Radamson, H. Zhu, Z. Wu, X. He, H. Lin, J. Liu, J. Xiang, Z. Kong, W. Xiang, J. Li, H. Cui, J. Gao, H. Yang, Y. Du, B. Xu, B. Li, X. Zhao, J. Yu, Y. Dong, and G. Wang, Nanomaterials, 10, 1555 (2020). [DOI: https://doi.org/10.3390/nano10081555]
  3. G. Arutchelvan, Q. Smets, D. Verreck, Z. Ahmed, A. Gaur, S. Sutar, J. Jussot, B. Groven, M. Heyns, D. Lin, I. Asselberghs, and I. Radu, Sci. Rep., 11, 6610 (2021). [DOI: https://doi.org/10.1038/s41598-021-85968-y]
  4. S. Zhang, J. Phys.: Conf. Ser., 1617, 012054 (2020). [DOI: https://doi.org/10.1088/1742-6596/1617/1/012054]
  5. R. Kim, U. E. Avci, and I. A. Young, IEEE J. Electron Devices Soc., 3, 37 (2015). [DOI: https://doi.org/10.1109/JEDS.2014.2363389]
  6. J. S. Yoon, S. Lee, J. Lee, J. Jeong, H. Yun, B. Kang, and R. H. Baek, IEEE Access, 7, 172290 (2019). [DOI: https://doi.org/10.1109/ACCESS.2019.2956503]
  7. H. H. Radamson, X. He, Q. Zhang, J. Liu, H. Cui, J. Xiang, Z. Kong, W. Xiang, J. Li, J. Gao, H. Yang, S. Gu, X. Zhao, Y. Du, J. Yu, and G. Wang, Micromachines, 10, 293 (2019). [DOI: https://doi.org/10.3390/mi10050293]
  8. K. Baral, P. K. Singh, S. Kumar, S. Chander, K. Singh, and S. Jit, Proc. 2018 3rd International Conference for Convergence in Technology (I2CT) (IEEE, Pune, India, 2018) p. 1. [DOI: https://doi.org/10.1109/I2CT.2018.8529584]
  9. P.S.T.N. Srinivas, A. Kumar, and P. K. Tiwari, Proc. 2019 IEEE 9th International Nanoelectronics Conferences (INEC) (IEEE, Kuching, Malaysia, 2019) p. 1. [DOI: https://doi.org/10.1109/INEC.2019.8853855]
  10. S. Folkersma, J. Bogdanowicz, A. Schuze, P. Favia, A. Franquet, V. Spampinato, D. H. Petersen, O. Hansen, H. H. Henrichsen, P. F. Nielsen, L. Shiv, and W. Vandervorst, Proc. 2018 22nd International Conference on Ion Implantation Technology (IIT) (IEEE, Wurzburg, Germany, 2018) p. 153. [DOI: https://doi.org/10.1109/IIT.2018.8807934]
  11. T. Saxena, V. Khemka, G. Qin, M. Zitouni, and R. Gupta, IEEE Trans. Electron Devices, 68, 658 (2021). [DOI: https://doi.org/10.1109/TED.2020.3043993]
  12. S. Sarkhel and N. Bagga, Proc. 2020 IEEE Applied Signal Processing Conference (ASPCON) (IEEE, Kolkata, India, 2020) p. 208. [DOI: https://doi.org/10.1109/ASPCON49795.2020.9276694]
  13. M. I. Khan, I.K.M.R. Rahman, and Q.D.M. Khosru, IEEE Trans. Electron Devices, 67, 3568 (2020). [DOI: https://doi.org/10.1109/TED.2020.3011645]
  14. N. K. Niranjan, S. Choudhury, M. Choudhury, K. L. Baishnab, K. Guha, and J. Iannacci, Microsyst. Technol., 27, 3757 (2021). [DOI: https://doi.org/10.1007/s00542-020-05160-6]
  15. S. Gupta, N. Pandey, and R. S. Gupta, Proc. 2020 IEEE 17th India Council International Conference (INDICON) (IEEE, New Delhi, India, 2020) p. 1. [DOI: https://doi.org/10.1109/INDICON49873.2020.9342380]
  16. D. Y. Jeon, M. Mouis, S. Barraud, and G. Ghibaudo, IEEE Trans. Electron Devices, 67, 4736 (2020). [DOI: https://doi.org/10.1109/TED.2020.3020284]
  17. D. Bosch, J. P. Colinge, G. Ghibaudo, X. Garros, S. Barraud, J. Lacord, B. Sklenard, L. Brunet, P. Batude, C. Fenouillet-Beranger, J. Cluzel, R. Kies, J. M. Hartmann, C. Vizioz, G. Audoit, F. Balestra, and F. Andrieu, Proc. 2020 IEEE Symposium on VLSI Technology (IEEE, Honolulu, USA, 2020) p. 1. [DOI: https://doi.org/10.1109/VLSITechnology18217.2020.9265036]
  18. D. Bosch, J. P. Colinge, J. Lugo, A. Tataridou, C. Theodorou, X. Garros, S. Barraud, J. Lacord, B. Sklenard, M. Casse, L. Brunet, P. Batude, C. Fenouillet-Beranger, D. Lattard, J. Cluzel, F. Allain, R. N. Youcef, J. M. Hartmann, C. Vizioz, G. Audoit, F. Balestra, and F. Andrieu, Proc. 2020 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA) (IEEE, Hsinchu, Taiwan, 2020) p. 126. [DOI: https://doi.org/10.1109/VLSI-TSA48913.2020.9203690]
  19. M. I. Khan, I.K.M.R. Rahman, and Q.D.M. Khosru, IEEE Trans. Electron Devices, 67, 3568 (2020). [DOI: https://doi.org/10.1109/TED.2020.3011645]
  20. B. Singh, D. Gola, K. Singh, E. Goel, S. Kumar, and S. Jit, IEEE Trans. Electron Devices, 63, 2299 (2016). [DOI: https://doi.org/10.1109/TED.2016.2556227]
  21. S. A. Hashemi, K. Beigi, and S. Jit, IEEE Trans. Electron Devices, 66, 4126 (2019). [DOI: https://doi.org/10.1109/TED.2019.2937205]
  22. V. Kumari, A. Kumar, M. Saxena, and M. Gupta, Superlattices Microstruct., 113, 57 (2018). [DOI: https://doi.org/10.1016/j.spmi.2017.09.049]
  23. P. K. Tiwari, S. Kumar, S. Mittal, V. Srivastava, U. Pandey, and S. Jit, Proc. 2009 International Multimedia, Signal Processing and Communication Technologies (IEEE, Aligarh, India, 2009) p. 52. [DOI: https://doi.org/10.1109/MSPCT.2009.5164172]
  24. Z. Ding, G. Hu, J. Gu, R. Liu, L. Wang, and T. Tang, Microelectron. J., 42, 515 (2011). [DOI: https://doi.org/10.1016/j.mejo.2010.11.002]
  25. P. K. Singh, K. Baral, S. Kumar, A. K. Singh, M. R. Tripathy, R. K. Upadhyay, and S. Jit, Proc. 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT) (IEEE, Bangalore, India, 2020) p. 1. [DOI: https://doi.org/10.1109/CONECCT50063.2020.9198488]
  26. C. Jiang, R. Liang, J. Wang, and J. Xu, AIP Adv., 5, 057122 (2015). [DOI: https://doi.org/10.1063/1.4921086]
  27. H. Jung, Int. J. Electr. Electron. Eng. Telecommun., 8, 334 (2019). [DOI: https://doi.org/10.18178/ijeetc.8.6.334-339]