References
- Al Amin, M., Arefin, M. S., Alam, M. R., Ahammad, T., and Hoque, M. R. (2021). Using mobile food delivery applications during COVID-19 pandemic: An extended model of planned behavior. Journal of Food Products Marketing, 27(2), 105-126. https://doi.org/10.1080/10454446.2021.1906817
- Alagoz, S. M., and Hekimoglu, H. (2012). A study on tam: Analysis of customer attitudes in online food ordering system. Procedia - Social and Behavioral Sciences, 62, 1138-1143. https://doi.org/10.1016/j.sbspro.2012.09.195
- Alalwan, A. A. (2020). Mobile food ordering apps: An empirical study of the factors affecting customer e-satisfaction and continued intention to reuse. International Journal of Information Management, 50, 28-44. https://doi.org/10.1016/j.ijinfomgt.2019.04.008
- Alam, M. Z., Hoque, Md. R., Hu, W., and Barua, Z. (2020). Factors influencing the adoption of mHealth services in a developing country: A patient-centric study. International Journal of Information Management, 50, 128-143. https://doi.org/10.1016/j.ijinfomgt.2019.04.016
- Al-Emran, M., Arpaci, I., and Salloum, S. A. (2020). An empirical examination of continuous intention to use m-learning: An integrated model. Education and Information Technologies. https://doi.org/10.1007/s10639-019-10094-2
- Alshurideh, M., Al Kurdi, B., Salloum, S. A., Arpaci, I., and Al-Emran, M. (2020). Predicting the actual use of m-learning systems: A comparative approach using PLS-SEM and machine learning algorithms. Interactive Learning Environments, 28(7), 1-15. https://doi.org/10.1080/10494820.2020.1826982
- Aureliano-Silva, L., Leung, X., and Spers, E. E. (2021). The effect of online reviews on restaurant visit intentions: Applying signaling and involvement theories. Journal of Hospitality and Tourism Technology, 12(4), 672-688. https://doi.org/10.1108/JHTT-06-2020-0143
- Bhattacherjee, A. (2001). Understanding information systems continuance: An expectation-confirmation model. MIS Quarterly, 25(3), 351. https://doi.org/10.2307/3250921
- Chatterjee, D., and Bolar, K. (2019). Determinants of mobile wallet intentions to use: The mental cost perspective. International Journal of Human-Computer Interaction, 35(10), 859-869. https://doi.org/10.1080/10447318.2018.1505697
- Chawla, D., and Joshi, H. (2019). Consumer attitude and intention to adopt mobile wallet in India: An empirical study. International Journal of Bank Marketing, 37(7), 1590-1618. https://doi.org/10.1108/IJBM-09-2018-0256
- Cheung, C. M. K., Lee, M. K. O., and Rabjohn, N. (2008). The impact of electronic word-ofmouth: The adoption of online opinions in online customer communities. Internet Research, 18(3), 229-247. https://doi.org/10.1108/10662240810883290
- Chin, W. W. (2010). Bootstrap cross-validation indices for PLS path model assessment. In V. Esposito Vinzi, W. W. Chin, J. Henseler and H. Wang (Eds.), Handbook of Partial Least Squares: Concepts, Methods and Applications (pp. 83-97). Springer. https://doi.org/10.1007/978-3-540-32827-8_4
- Cho, M., Bonn, M. A., and Li, J. (2019). Differences in perceptions about food delivery apps between single-person and multi-person households. International Journal of Hospitality Management, 77, 108-116. https://doi.org/10.1016/j.ijhm.2018.06.019
- Chopdar, P. K., and Balakrishnan, J. (2020). Consumers response towards mobile commerce applications: S-O-R approach. International Journal of Information Management, 53, 102106. https://doi.org/10.1016/j.ijinfomgt.2020.102106
- Chopdar, P. Kr., Korfiatis, N., Sivakumar, V. J., and Lytras, M. D. (2018). Mobile shopping apps adoption and perceived risks: A cross-country perspective utilizing the Unified Theory of Acceptance and Use of Technology. Computers in Human Behavior, 86, 109-128. https://doi.org/10.1016/j.chb.2018.04.017
- Chopdar, P. Kr., and Sivakumar, V. J. (2019). Understanding continuance usage of mobile shopping applications in India: The role of espoused cultural values and perceived risk. Behaviour & Information Technology, 38(1), 42-64. https://doi.org/10.1080/0144929X.2018.1513563
- Correa, J. C., Garzon, W., Brooker, P., Sakarkar, G., Carranza, S. A., Yunado, L., and Rincon, A. (2019). Evaluation of collaborative consumption of food delivery services through web mining techniques. Journal of Retailing and Consumer Services, 46, 45-50. https://doi.org/10.1016/j.jretconser.2018.05.002
- Dai, H. M., Teo, T., Rappa, N. A., and Huang, F. (2020). Explaining Chinese university students' continuance learning intention in the MOOC setting: A modified expectation confirmation model perspective. Computers & Education, 150, 103850. https://doi.org/10.1016/j.compedu.2020.103850
- Dehghani, M., Kim, K. J., and Dangelico, R. M. (2018). Will smartwatches last? Factors contributing to intention to keep using smart wearable technology. Telematics and Informatics, 35(2), 480-490. https://doi.org/10.1016/j.tele.2018.01.007
- Dehghani, M., and Tumer, M. (2015). A research on effectiveness of Facebook advertising on enhancing purchase intention of consumers. Computers in Human Behavior, 49, 597-600. https://doi.org/10.1016/j.chb.2015.03.051
- Duda-Chodak, A., Lukasiewicz, M., Ziec, G., Florkiewicz, A., and Filipiak-Florkiewicz, A. (2020). Covid-19 pandemic and food: Present knowledge, risks, consumers fears and safety. Trends in Food Science & Technology, 105, 145-160. https://doi.org/10.1016/j.tifs.2020.08.020
- Elvandari, C. D. R., Sukartiko, A. C., and Nugrahini, A. D. (2018). Identification of technical requirement for improving quality of local online food delivery service in Yogyakarta. Journal of Industrial and Information Technology in Agriculture, 1(2), 1-7. https://doi.org/10.24198/jiita.v1i2.14573
- Elwalda, A., Lu, K., and Ali, M. (2016). Perceived derived attributes of online customer reviews. Computers in Human Behavior, 56, 306-319. https://doi.org/10.1016/j.chb.2015.11.051
- Filieri, R. (2015). What makes online reviews helpful? A diagnosticity-adoption framework to explain informational and normative influences in e-WOM. Journal of Business Research, 68(6), 1261-1270. https://doi.org/10.1016/j.jbusres.2014.11.006
- Gefen, D., Rigdon, E. E., and Straub, D. (2011). An update and extension to SEM guidelines for administrative and social science research. MIS Quarterly, 35(2), iii-xiv. https://doi.org/10.2307/23044042
- Global Finance. (2020). Kuwait Startups: Seeding Tomorrow's Giants, Retrieved from https://www.gfmag.com/magazine/january-2020/kuwait-startups-seeding-tomorrows-giants
- GSMA. (2020). The Mobile Economy 2020, Retrieved from https://www.gsma.com/mobileeconomy/
- Gunden, N., Morosan, C., and DeFranco, A. (2020). Consumers' intentions to use online food delivery systems in the USA. International Journal of Contemporary Hospitality Management, 32(3), 1325-1345. https://doi.org/10.1108/IJCHM-06-2019-0595
- Gutierrez, A., O'Leary, S., Rana, N. P., Dwivedi, Y. K., and Calle, T. (2019). Using privacy calculus theory to explore entrepreneurial directions in mobile location-based advertising: Identifying intrusiveness as the critical risk factor. Computers in Human Behavior, 95, 295-306. https://doi.org/10.1016/j.chb.2018.09.015
- Hagberg, J., and Holmberg, U. (2017). Travel modes in grocery shopping. International Journal of Retail & Distribution Management, 45(9), 991-1010. https://doi.org/10.1108/IJRDM-08-2016-0134
- Hair, J., Hollingsworth, C. L., Randolph, A. B., and Chong, A. Y. L. (2017a). An updated and expanded assessment of PLS-SEM in information systems research. Industrial Management & Data Systems, 117(3), 442-458. https://doi.org/10.1108/IMDS-04-2016- 0130
- Hair, J. F., Hult, T., Ringle, C., and Sarstedt, M. (2017b). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). SAGE Publications.
- Hair, J. F., Risher, J. J., Sarstedt, M., and Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2-24. https://doi.org/10.1108/EBR-11-2018-0203
- Hair, J. F., Sarstedt, M., Hopkins, L., and G. Kuppelwieser, V. (2014). Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. European Business Review, 26(2), 106-121. https://doi.org/10.1108/EBR-10-2013- 0128
- Hammouri, Q., Altaher, A., Al-Gasawneh, J., Rabaa'i, A., Aloqool, A., and Khataybeh, H. (2022). Understanding the determinants of digital shopping features: The role of promo code on customer behavioral intention, International Journal of Data and Network Science. https://doi.org/10.5267/j.ijdns.2022. 4.009
- Hanafizadeh, P., Behboudi, M., Abedini Koshksaray, A., and Jalilvand Shirkhani Tabar, M. (2014). Mobile-banking adoption by Iranian bank clients. Telematics and Informatics, 31(1), 62-78. https://doi.org/10.1016/j.tele.2012.11.001
- He, Z., Han, G., Cheng, T. C. E., Fan, B., and Dong, J. (2019). Evolutionary food quality and location strategies for restaurants in competitive online-to-offline food ordering and delivery markets: An agent-based approach. International Journal of Production Economics, 215, 61-72. https://doi.org/10.1016/j.ijpe.2018.05.008
- Henseler, J., Hubona, G., and Ray, P. A. (2016). Using PLS path modeling in new technology research: Updated guidelines. Industrial Management & Data Systems, 116(1), 2-20. https://doi.org/10.1108/IMDS-09-2015-0382
- Henseler, J., Ringle, C. M., and Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115-135. https://doi.org/10.1007/s11747-014-0403-8
- Henseler, J., Ringle, C. M., and Sinkovics, R. R. (2009). The use of partial least squares path modeling in international marketing. In R. R. Sinkovics and P. N. Ghauri (Eds.), New Challenges to International Marketing (Vol. 20, pp. 277-319). Emerald Group Publishing Limited. https://doi.org/10.1108/S1474-7979(2009) 0000020014
- Hock, C., Ringle, C. M., and Sarstedt, M. (2010). Management of multi-purpose stadiums: Importance and performance measurement of service interfaces. International Journal of Services Technology and Management, 14(2/3), 188. https://doi.org/10.1504/IJSTM.2010.034327
- Hong, H., Ye, Q., Xu, D., and Jin, Y. (2018). Travel and Online Review Behavior. PACIS 2018 Proceedings. Retrieved from https://aisel.aisnet.org/pacis2018/3
- Hu, N., Liu, L., and Zhang, J. J. (2008). Do online reviews affect product sales? The role of reviewer characteristics and temporal effects. Information Technology and Management, 9(3), 201-214. https://doi.org/10.1007/s10799-008-0041-2
- Huang, Y., and Oppewal, H. (2006). Why consumers hesitate to shop online: An experimental choice analysis of grocery shopping and the role of delivery fees. International Journal of Retail & Distribution Management, 34(4/5), 334-353. https://doi.org/10.1108/09590550610660260
- Huang, Y. M. (2019). Examining students' continued use of desktop services: Perspectives from expectation- confirmation and social influence. Computers in Human Behavior, 96, 23-31. https://doi.org/10.1016/j.chb.2019.02.010
- Hume, M. (2008). Developing a conceptual model for repurchase intention in the performing arts: The roles of emotion, core service and service delivery. International Journal of Arts Management, 10(2), 40-55. JSTOR.
- IMARC. (2020). Global Online Food Delivery Market to Reach US$ 164.5 Billion by 2024, Stimulated by Development of User-Friendly Applications, Retrieved from https://www.imarcgroup.com/global-online-food-delivery-market
- Joo, Y. J., Kim, N., and Kim, N. H. (2016). Factors predicting online university students' use of a mobile learning management system (m-LMS). Educational Technology Research and Development, 64(4), 611-630. https://doi.org/10.1007/s11423-016-9436-7
- Kang, J. W., and Namkung, Y. (2019). The information quality and source credibility matter in customers' evaluation toward food O2O commerce. International Journal of Hospitality Management, 78, 189-198. https://doi.org/10.1016/j.ijhm.2018.10.011
- Kapoor, A. P., and Vij, M. (2018). Technology at the dinner table: Ordering food online through mobile apps. Journal of Retailing and Consumer Services, 43, 342-351. https://doi.org/10.1016/j.jretconser. 2018.04.001
- Karahanna, E., Agarwal, R., and Angst, C. M. (2006). Reconceptualizing compatibility beliefs in technology acceptance research. MIS Quarterly, 30(4), 781-804. https://doi.org/10.2307/25148754
- Kaur, P., Dhir, A., Talwar, S., and Ghuman, K. (2021). The value proposition of food delivery apps from the perspective of theory of consumption value. International Journal of Contemporary Hospitality Management, 33(4), 1129-1159. https://doi.org/10.1108/IJCHM-05-2020-0477
- Kenny, D. (2018). Moderator Variables, Retrieved from http://davidakenny.net/cm/moderation.htm
- KFAS. (2019). FinTech: Future of Financial services, Retrieved from https://www.kfas.com/media/studies
- Kim, C., Galliers, R. D., Shin, N., Ryoo, J. H., and Kim, J. (2012). Factors influencing Internet shopping value and customer repurchase intention. Electronic Commerce Research and Applications, 11(4), 374-387. https://doi.org/10.1016/j.elerap.2012.04.002
- Kim, E. L., and Tanford, S. (2019). Seeking reward or avoiding risk from restaurant reviews: Does distance matter? International Journal of Contemporary Hospitality Management, 31(12), 4482-4499. https://doi.org/10.1108/IJCHM-03-2018-0235
- Kline, R. B. (2016). Principles and Practice of Structural Equation Modeling, Fourth Edition. Guilford Publications.
- Konig, T. M., Hein, N., and Nimsgern, V. (2022). A value perspective on online review platforms: Profiling preference structures of online shops and traditional companies. Journal of Business Research, 145, 387-401. https://doi.org/10.1016/j.jbusres.2022.02.080
- Kumar, S., and Shah, A. (2021). Revisiting food delivery apps during COVID-19 pandemic? Investigating the role of emotions. Journal of Retailing and Consumer Services, 62, 102595. https://doi.org/10.1016/j.jretconser.2021.102595
- Lee, E. Y., Lee, S. B., and Jeon, Y. J. J. (2017). Factors influencing the behavioral intention to use food delivery apps. Social Behavior and Personality: An International Journal, 45(9), 1461-1473. https://doi.org/10.2224/sbp.6185
- Lee, J. (2019). Effects of service and mobile app quality on customer satisfaction and repurchase intention in the context of O2O food delivery services in Korea and China. Test Engineering and Management, 81(11/12), 335-345.
- Lee, S. W., Sung, H. J., and Jeon, H. M. (2019). Determinants of continuous intention on food delivery apps: Extending UTAUT2 with information quality. Sustainability, 11(11), 3141. https://doi.org/10.3390/su11113141
- Leung, L., and Chen, C. (2017). Extending the theory of planned behavior: A study of lifestyles, contextual factors, mobile viewing habits, TV content interest, and intention to adopt mobile TV. Telematics and Informatics, 34(8), 1638-1649. https://doi.org/10.1016/j.tele.2017.07.010
- Liebana-Cabanillas, F., Marinkovic, V., Ramos De Luna, I., and Kalinic, Z. (2018). Predicting the determinants of mobile payment acceptance: A hybrid SEM-neural network approach. Technological Forecasting and Social Change, 129, 117-130. https://doi.org/10.1016/j.techfore.2017.12.015
- Liu, H., Lobschat, L., Verhoef, P. C., and Zhao, H. (2019). App adoption: The effect on purchasing of customers who have used a mobile website previously. Journal of Interactive Marketing, 47, 16-34. https://doi.org/10.1016/j.intmar.2018.12.001
- Maimaiti, M., Zhao, X., Jia, M., Ru, Y., and Zhu, S. (2018). How we eat determines what we become: Opportunities and challenges brought by food delivery industry in a changing world in China. European Journal of Clinical Nutrition, 72(9), 1282-1286. https://doi.org/10.1038/s41430-018-0191-1
- Marinkovic, V., Dordevic, A., and Kalinic, Z. (2020). The moderating effects of gender on customer satisfaction and continuance intention in mobile commerce: A UTAUT-based perspective. Technology Analysis & Strategic Management, 32(3), 306-318. https://doi.org/10.1080/09537325.2019.1655537
- McLean, G., Osei-Frimpong, K., Al-Nabhani, K., and Marriott, H. (2020). Examining consumer attitudes towards retailers' m-commerce mobile applications - An initial adoption vs. Continuous use perspective. Journal of Business Research, 106, 139-157. https://doi.org/10.1016/j.jbusres.2019. 08.032
- Mehra, A., Paul, J., and Kaurav, R. P. S. (2020). Determinants of mobile apps adoption among young adults: Theoretical extension and analysis. Journal of Marketing Communications, 1-29. https://doi.org/10.1080/13527266.2020.1725780
- Mehrolia, S., Alagarsamy, S., and Solaikutty, V. M. (2021). Customers response to online food delivery services during COVID-19 outbreak using binary logistic regression. International Journal of Consumer Studies, 45(3), 396-408. https://doi.org/10.1111/ijcs.12630
- Morganosky, M. A., and Cude, B. J. (2000). Consumer response to online grocery shopping. International Journal of Retail & Distribution Management, 28(1), 17-26. https://doi.org/10.1108/09590550010306737
- Nejati, M., and Parakhodi Moghaddam, P. (2013). The effect of hedonic and utilitarian values on satisfaction and behavioural intentions for dining in fast-casual restaurants in Iran. British Food Journal, 115(11), 1583-1596. https://doi.org/10.1108/BFJ-10-2011-0257
- Nunnally, C., and Bernstein, H. (1994). Psychometric Theory (3rd ed.). McGrawHill.
- Okumus, B., Ali, F., Bilgihan, A., and Ozturk, A. B. (2018). Psychological factors influencing customers' acceptance of smartphone diet apps when ordering food at restaurants. International Journal of Hospitality Management, 72, 67-77. https://doi.org/10.1016/j.ijhm.2018.01.001
- Okumus, B., and Bilgihan, A. (2014). Proposing a model to test smartphone users' intention to use smart applications when ordering food in restaurants. Journal of Hospitality and Tourism Technology, 5(1), 31-49. https://doi.org/10.1108/JHTT-01-2013-0003
- Oliveira, T., Thomas, M., Baptista, G., and Campos, F. (2016). Mobile payment: Understanding the determinants of customer adoption and intention to recommend the technology. Computers in Human Behavior, 61, 404-414. https://doi.org/10.1016/j.chb.2016. 03.030
- Ozturk, A. B., Bilgihan, A., Nusair, K., and Okumus, F. (2016). What keeps the mobile hotel booking users loyal? Investigating the roles of self-efficacy, compatibility, perceived ease of use, and perceived convenience. International Journal of Information Management, 36(6), 1350-1359. https://doi.org/10.1016/j.ijinfomgt.2016. 04.005
- Pigatto, G., Machado, J. G. de C. F., Negreti, A. dos S., and Machado, L. M. (2017). Have you chosen your request? Analysis of online food delivery companies in Brazil. British Food Journal, 119(3), 639-657. https://doi.org/10.1108/BFJ-05-2016-0207
- Qahri-Saremi, H., and Montazemi, A. R. (2022). Negativity bias in the diagnosticity of online review content: The effects of consumers' prior experience and need for cognition. European Journal of Information Systems, 31(2), 1-18. https://doi.org/10.1080/0960085X.2022.2041372
- Rabaa'i, A. A. (2017a). Holistic procedures for contemporary formative construct validation using PLS: A comprehensive example. International Journal of Business Information Systems, 25(3), 279-318. https://doi.org/10.1504/IJBIS.2017.084436
- Rabaa'i, A. A. (2017b). The use of UTAUT to investigate the adoption of e-government in Jordan: A cultural perspective. International Journal of Business Information Systems, 24(3), 285-315. https://doi.org/10.1504/IJBIS.2017.082037
- Rabaa'i, A. A., and Abu ALMaati, S. (2021). Exploring the determinants of users' continuance intention to use mobile banking services in Kuwait: Extending the expectation-confirmation model. Asia Pacific Journal of Information Systems, 3, 141-184. https://doi.org/10.14329/apjis.2021.31 .2.141
- Rabaa'i, A. A., ALmaati, S. A., and Zhu, X. (2021). Students' continuance intention to use Moodle: An expectationconfirmation model approach. Interdisciplinary Journal of Information, Knowledge, and Management, 16, 397-434. https://doi.org/10.28945/4842
- Rabaa'i, A. A., Bhat, H., and Abu Al Maati, S. (2018). Theorising social networks addiction: An empirical investigation. International Journal of Social Media and Interactive Learning Environments, 6(1), 1. https://doi.org/10.1504/IJSMILE.2018.10013518
- Rabaa'i, A. A., Tate, M., and Gable, G. (2015). Can't see the trees for the forest? Why IS-SERVQUAL items matter. Asia Pacific Journal of Information Systems, 25(2), 211-238. https://doi.org/10.14329/apjis.2015.25. 2.211
- Rabaa'i, A. A., and Zhu, X. (2021). Understanding the determinants of wearable payment adoption: An empirical study. Interdisciplinary Journal of Information, Knowledge, and Management, 16, 173- 211. https://doi.org/10.28945/4746
- Rabaa'i, Ahmad A., Zhu, X., Jayaraman, J. D., Jha, P., and Nguyen, T. (2022). A Neural Network Approach to Examine the Continuous Usage of Mobile Food Delivery Apps. Proceedings of the 2nd International Business Analytics Conference, April 9, 2022, Mumbai, India.
- Rabaai, A. A., Zogheib, B., AlShatti, A., and AlJamal, E. M. (2015). Adoption of e-government in developing countries: The case of the state of Kuwait. Journal of Global Research in Computer Science, 6(10), 6-21.
- Rabaai, A., and Gable, G. (2012). IS service quality as a multi-dimensional formative construct. Proceedings of the 16th Pacific Asia Conference on Information Systems (PACIS), 1-19.
- Rabaa'i, A. (in press a). FinTech in Kuwait: A survey study. International Journal of Business Information Systems. https://doi.org/10.1504/IJBIS.2021. 10042271
- Rabaa'i, A. (in press b). Factors affecting the adoption of Mobile Grocery Delivery Applications (MGDAs), International Journal of Business Information Systems. https://doi.org/10.1504/IJBIS.2021.10045250
- Rabaa'i, A. (in press c). An investigation into the acceptance of mobile wallets in the FinTech era: An empirical study from Kuwait, International Journal of Business Information Systems. https://doi.org/10.1504/IJBIS.2021.10038422
- Ramos De Luna, I., Montoro-Rios, F., and Liebana-Cabanillas, F. (2016). Determinants of the intention to use NFC technology as a payment system: An acceptance model approach. Information Systems and E-Business Management, 14(2), 293-314. https://doi.org/10.1007/s10257-015-0284-5
- Ramus, K., and Asger Nielsen, N. (2005). Online grocery retailing: What do consumers think? Internet Research, 15(3), 335-352. https://doi.org/10.1108/10662240510602726
- Ray, A., Dhir, A., Bala, P. K., and Kaur, P. (2019). Why do people use food delivery apps (FDA)? A uses and gratification theory perspective. Journal of Retailing and Consumer Services, 51, 221-230. https://doi.org/10.1016/j.jretconser.2019.05.025
- Ringle, C., Wende, S., and Becker, J. (2015). SmartPLS 3. Boenningstedt: SmartPLS GmbH. Retrieved from http://www.smartpls.com
- Rogers, E. (2003). Diffusion of Innovations (5th ed.). Free Press.
- Roh, M., and Park, K. (2019). Adoption of O2O food delivery services in South Korea: The moderating role of moral obligation in meal preparation. International Journal of Information Management, 47, 262-273. https://doi.org/10.1016/j.ijinfomgt.2018.09.017
- Sarstedt, M., Ringle, C. M., Smith, D., Reams, R., and Hair, J. F. (2014). Partial least squares structural equation modeling (PLS-SEM): A useful tool for family business researchers. Journal of Family Business Strategy, 5(1), 105-115. https://doi.org/10.1016/j.jfbs.2014.01.002
- Shareef, M. A., Dwivedi, Y. K., Kumar, V., and Kumar, U. (2016). Reformation of public service to meet citizens' needs as customers: Evaluating SMS as an alternative service delivery channel. Computers in Human Behavior, 61, 255-270. https://doi.org/10.1016/j. chb.2016.03.002
- Sharma, S. K., Sharma, H., and Dwivedi, Y. K. (2019). A hybrid SEM-Neural network model for predicting determinants of mobile payment services. Information Systems Management, 36(3), 243-261. https://doi.org/10.1080/10580530.2019.1620504
- Shugan, S. M. (2004). The impact of advancing technology on marketing and academic research. Marketing Science, 23(4), 469-475. https://doi.org/10.1287/mksc.1040. 0096
- Singh, N., Sinha, N., and Liebana-Cabanillas, F. J. (2020). Determining factors in the adoption and recommendation of mobile wallet services in India: Analysis of the effect of innovativeness, stress to use and social influence. International Journal of Information Management, 50, 191-205. https://doi.org/10.1016/j.ijinfomgt.2019.05.022
- Slade, E., Williams, M., Dwivedi, Y., and Piercy, N. (2014). Exploring consumer adoption of proximity mobile payments. Journal of Strategic Marketing, 23(3), 209-223. https://doi.org/10.1080/0965254X.2014. 914075
- Statista. (2019). Kuwait: Gross domestic product (GDP) in current prices from 1984 to 2024, Retrieved from https://www.statista.com/statistics/438858/gross-domestic-product-gdp-in-kuwait/
- Statistia. (2020). eServices Report 2019-Online Food Delivery, Retrieved from https://www.statista.com/study/40457/food-delivery/
- Straub, D., and Gefen, D. (2004). Validation guidelines for IS positivist research. Communications of the Association for Information Systems, 13. https://doi.org/10.17705 /1CAIS.01324 https://doi.org/10.17705/1CAIS.01324
- Su, P., Wang, L., and Yan, J. (2018). How users' Internet experience affects the adoption of mobile payment: A mediation model. Technology Analysis & Strategic Management, 30(2), 186-197. https://doi.org/10.1080/09537325.2017.1297788
- Suhartanto, D., Helmi Ali, M., Tan, K. H., Sjahroeddin, F., and Kusdibyo, L. (2019). Loyalty toward online food delivery service: The role of e-service quality and food quality. Journal of Foodservice Business Research, 22(1), 81-97. https://doi.org/10.1080/15378020.2018.1546076
- Talabat. (2021). The number of restaurants in Kuwait, Retrieved from https://www.talabat.com/kuwait/restaurants?page=121
- Troise, C., O'Driscoll, A., Tani, M., and and Prisco, A. (2020). Online food delivery services and behavioural intention: A test of an integrated TAM and TPB framework. British Food Journal, 123(2), 664-683. https://doi.org/10.1108/BFJ-05-2020-0418
- Venkatesh, V., Thong, J. Y. L., and Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157-178. JSTOR. https://doi.org/10.2307/41410412
- Wang, Q., Zhang, W., Li, J., Mai, F., and Ma, Z. (2022). Effect of online review sentiment on product sales: The moderating role of review credibility perception. Computers in Human Behavior, 133, 107272. https://doi.org/10.1016/j.chb.2022.107272
- Wang, W. T., Ou, W. M., and Chen, W. Y. (2019). The impact of inertia and user satisfaction on the continuance intentions to use mobile communication applications: A mobile service quality perspective. International Journal of Information Management, 44, 178-193. https://doi.org/10.1016/j.ijinfomgt.2018.10.011
- WHO. (2020). COVID-19 and food safety: Guidance for food businesses, Retrieved from https://apps.who.int/iris/bitstream/handle/10665/331705/WHO-2019-nCoV-Food_Safety-2020.1-eng.pdf
- WHO. (2021). WHO Coronavirus (COVID-19) Dashboard, Retrieved from https://covid19. who.int/
- Yen, C. L. A., and Tang, C. H. H. (2019). The effects of hotel attribute performance on electronic word-of-mouth (eWOM) behaviors. International Journal of Hospitality Management, 76, 9-18. https://doi.org/10.1016/j.ijhm.2018.03.006
- Yeo, V. C. S., Goh, S. K., and Rezaei, S. (2017). Consumer experiences, attitude and behavioral intention toward Online Food Delivery (OFD) services. Journal of Retailing and Consumer Services, 35, 150-162. https://doi.org/10.1016/j.jretconser.2016.12.013
- Zawya. (2021). Kuwait eateries, cafes climb in count, Retrieved from https://www.zawya.com/mena/en/business/story/Kuwait_eateries_cafes_climb_in_count-SNG_244929858/
- Zhao, H., Anong, S. T., and Zhang, L. (2019). Understanding the impact of financial incentives on NFC mobile payment adoption: An experimental analysis. International Journal of Bank Marketing, 37(5), 1296-1312. https://doi.org/10.1108/IJBM-08 -2018-0229
- Zhao, Y., and Bacao, F. (2020). What factors determining customer continuingly using food delivery apps during 2019 novel coronavirus pandemic period? International Journal of Hospitality Management, 91, 102683. https://doi.org/10.1016/j.ijhm.2020.102683
- Zogheib, B., Rabaa'i, A., Zogheib, S., and Elsaheli, A. (2015). University student perceptions of technology use in mathematics learning. Journal of Information Technology Education: Research, 14, 417-438. https://doi.org/10.28945 /2315 https://doi.org/10.28945/2315