DOI QR코드

DOI QR Code

생산제품별 특성 분석을 통한 효율성 및 처리시간 향상을 위한 IIoT 처리 분석 모델

IIoT processing analysis model for improving efficiency and processing time through characteristic analysis by production product

  • 정윤수 (목원대학교 정보통신융합공학부) ;
  • 김용태 (한남대학교 멀티미디어공학과)
  • Jeong, Yoon-Su (Dept. of information Communication Convergence Engineering, Mokwon University) ;
  • Kim, Yong-Tae (Dept. of Multimedia Engineering, Hannam University)
  • 투고 : 2022.03.21
  • 심사 : 2022.04.20
  • 발행 : 2022.04.28

초록

최근 산업 분야에서는 생산 효율성 향상 및 비용 절감을 위해서 저전력 프로세스와 네트워크 카드를 결합한 IIoT 장치를 산업 현장에 융합시킨 다양한 연구를 진행하고 있다. 본 논문에서는 산업 현장에 구축된 기반 시설에 IIoT 센서 정보를 부착하여 생산된 제품을 효율적으로 관리할 수 있는 처리 모델을 제안한다. 제안 모델은 IIoT에서 생산된 제품의 센싱 정보를 일정 간격으로 체크하여 비정상적으로 처리된 센싱 정보를 실시간으로 탐지하도록 생산 제품에 IIoT 데이터 수집, 전처리, 특성 생성 및 레이블을 사용하여 생산 데이터를 만든다. 특히, 제안 모델은 산업 현장에서 생산되는 제품 정보를 실시간으로 처리할 수 있도록 추적 및 모니터링을 수행하여 관리자가 손쉽게 IIoT 데이터를 손쉽게 처리할 수 있다. 또한, 기존 생산 환경을 기반으로 제안 모델을 운용하기 때문에 기존 시스템과의 연계가 원활하다.

Recently, in the industrial field, various studies are being conducted on converging IIoT devices that combine low-power processes and network cards into industrial sites to improve production efficiency and reduce costs. In this paper, we propose a processing model that can efficiently manage products produced by attaching IIoT sensor information to infrastructure built in industrial sites. The proposed model creates production data using IIoT data collection, preprocessing, characteristic generation, and labels to detect abnormally processed sensing information in real time by checking sensing information of products produced by IIoT at regular intervals. In particular, the proposed model can easily process IIoT data by performing tracking and monitoring so that product information produced in industrial sites can be processed in real time. In addition, since the proposed model is operated based on the existing production environment, the connection with the existing system is smooth.

키워드

참고문헌

  1. Jeong Y. S. (2011). A User Privacy Protection Scheme based on Password through User Information Virtuality in Cloud Computing. Journal of Convergence Soceity for SMB, 1(1), 29-37.
  2. Kim K. I. (2014). A Exploratory Study IMS Performance Mdodeling Using Information Systems Success Model. Journal of Digital Convergence, 12(3), 127-140. https://doi.org/10.14400/JDC.2014.12.3.127
  3. Kim K. I. (2015). The Effects on Improvement of IMS Through Corrective Actions. Journal of the Convergence Society for SMB, 5(4), 1-4.
  4. Kim K. I. (2012). Causes Analysis of Increasing Revocation for IMS Certification in small and Medium-size Enterprises. Journal of the Convergence Society for SMB, 2(2), 7-12.
  5. Kanungo R. N. (1982). Measurement of job and work involvement. Journal of Applied Psychology, 67(3), 341-349. https://doi.org/10.1037//0021-9010.67.3.341
  6. Babin B. J. and Boles J. S. (1996). The effects of perceived co-worker involvement and supervisor support on service provider role stress, performance and job satisfaction. Journal of retailing, 72(1), 57-75. https://doi.org/10.1016/S0022-4359(96)90005-6
  7. Shin S. S., Jeong Y. S. and An Y. J. (2015). A Study of Analysis and Response and Plan for National and International Security Practices using Fin-Tech Technologies. Journal of Convergence Soceity for SMB, 5(3), 1-7.
  8. Jeong Y. S. (2016). A Study of An Efficient Clustering Processing Scheme of Patient Disease Information for Cloud Computing Environment. Journal of Convergence Soceity for SMB, 6(1), 33-38. https://doi.org/10.22156/CS4SMB.2016.6.1.033
  9. D. Ilic, S. Karnouskos & M. Wilhelm. (2013). A comparative analysis of smart metering data aggregation performance. 2013 11th IEEE International Conference on Industrial Informatics (INDIN), 434-439.
  10. J. S. Lee. (2017). A Study on the Effects of the Cooperative Philosophy between SMEs to the Cooperative Activities and Performance. Journal of the Korea Convergence Society, 8(9), 301-309. https://doi.org/10.15207/JKCS.2017.8.9.301
  11. Y. S. Jeong, Y. H. Yon & J. H. Ku. (2017). Hash-chain-based IoT authentication scheme suitable for small and medium enterprises. Journal of Convergence for Information Technology, 7(4), 105-111. https://doi.org/10.22156/CS4SMB.2017.7.4.105
  12. A. Deshpande, P. Pitale, and S. Sanap, "Industrial automation using Internet of Things (IoT)," Int. J. Adv. Res. Comput. Eng. Technol., vol. 5, no. 2, pp. 266-269, 2016.
  13. N. Choosri, Y. Park, S. Grudpan, P. Chuarjedton, and A. Ongvisesphaiboon, "IoT-RFID testbed for supporting traffic light control," Int. J. Inf. Electron. Eng., vol. 5, no. 2, p. 102, Mar. 2015.
  14. H. Merchant and D. Ahire, "Industrial automation using IoT with raspberry Pi," Int. J. Comput. Appl., vol. 168, no. 1, pp. 44-46, 2017. https://doi.org/10.5120/ijca2017914277
  15. Industrial Internet Consortium. (2019). I.-I.C. Infinite Industrial IoT Innovation 2014-2019. [Online]. Available: http://www.iotinfinite.org and http://www.iotinfinite.org. Commun. Technol., vol. 62, no. 2, pp. 151-159, 2015.
  16. M. Hossain, S. Noor, Y. Karim, and R. Hasan, "IoTbed: A generic architecture for testbed as a service for Internet of Things-based systems," in Proc. ICIOT, Jun. 2017, pp. 42-49.
  17. Y. Berhanu, H. Abie, and M. Hamdi, "A testbed for adaptive security for IoT in eHealth," in Proc. Int. Workshop Adapt. Secur., 2013, pp. 1-8.
  18. S. Siboni et al., "Security testbed for Internet-of-Things devices," IEEE Trans. Rel., vol. 68, no. 1, pp. 23-44, Mar. 2019. https://doi.org/10.1109/tr.2018.2864536
  19. O. A. Waraga, M. Bettayeb, Q. Nasir, and M. A. Talib, "Design and implementation of automated IoT security testbed," Comput. Secur., vol. 88, Jan. 2020, Art. no. 101648.
  20. O. Nock, J. Starkey, and C. M. Angelopoulos, "Addressing the security gap in IoT: Towards an IoT cyber range," Sensors, vol. 20, no. 18, p. 5439, Sep. 2020. https://doi.org/10.3390/s20185439