DOI QR코드

DOI QR Code

Survey of Antibiotic Resistant Bacteria in Ulleungdo, Korea

울릉도의 항생제 내성균 조사

  • Jun Hyung Lee (Department of Marine Bioscience, College of Life Sciences, Gangneung-Wonju National University) ;
  • Hye Won Hong (Department of Marine Bioscience, College of Life Sciences, Gangneung-Wonju National University) ;
  • Dukki Han (Department of Marine Bioscience, College of Life Sciences, Gangneung-Wonju National University)
  • 이준형 (강릉원주대학교 해양생명과학과) ;
  • 홍혜원 (강릉원주대학교 해양생명과학과) ;
  • 한덕기 (강릉원주대학교 해양생명과학과)
  • Received : 2022.12.16
  • Accepted : 2022.12.23
  • Published : 2022.12.31

Abstract

BACKGROUND: Although antibiotics have contributed to treatment of bacterial infection, the antibiotic abuse can lead to antibiotic resistant bacteria. Impact of human activities on distribution of antibiotic resistance has been intensively issued and occurrence of antibiotic resistant bacteria in contaminated environments would not be a surprise. Nonetheless, anthropogenic contamination with the dissemination of antibiotic resistance along uncontaminated environments has been less considered. The aim of this study is to investigate antibiotic resistant bacteria across Ulleungdo, known as antibiotic resistance free and anthropogenic pollution free environment in Rep. of Korea. METHODS AND RESULTS: Antibiotic resistant bacteria in coastal seawater of Ulleungdo were investigated in July 2021. Antibiotic susceptibility test using the disk diffusion method was applied with six drugs according to the Clinical and Laboratory Standards Institute (CLSI) guideline. Total 43 bacterial isolates were tested and 20 isolates among of them showed multidrug resistance. Particularly, the number and ratio of resistant bacteria were relatively high in a densely populated area of Ulleungdo. The bacterial communities were investigated using 16S rRNA gene metabarcoding approach in the coastal seawater and soils of Ulleungdo. In the bacterial communities, Firmicutes were selectively distributed only in seawater, suggesting the possibility of anthropogenic contamination in coastal seawater of Ulleungdo. CONCLUSION(S): We found antibiotic resistant bacteria in a populated area of Ulleungdo. The occurrence of antibiotic resistant bacteria in Ulleungdo seems to result from the recent anthropogenic impact. Consistent monitoring of antibiotic resistant bacteria in the uncontaminated environment needs to considered for future risk assessment of antibiotics.

Keywords

Acknowledgement

This study was supported by "2022 Academic Research Support Program in Gangneung-Wonju National University" and "Korea Institute of Marine Scinece & Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries (20220533)".

References

  1. English BK, Gaur AH (2010) The use and abuse of antibiotics and the development of antibiotic resistance. Hot Topics in Infection and Immunity in Children VI, 73-82. https://doi.org/10.1007/978-1-4419-0981-7_6.
  2. Rai PK, Tripathi BD (2007) Microbial contamination in vegetables due to irrigation with partially treated municipal wastewater in a tropical city. International Journal of Environmental Health Research, 17(5), 389-395. https://doi.org/10.1080/09603120701628743.
  3. Pant A, Mittal AK (2007) Monitoring of pathogenicity of effluents from the UASB based sewage treatment plant. Environmental Monitoring and Assessment, 133(1), 43-51. https://doi.org/10.1007/s10661-006-9558-1.
  4. Igbinosa EO, Obi LC, Okoh AI (2009) Occurrence of potentially pathogenic vibrios in final effluents of a wastewater treatment facility in a rural community of the Eastern Cape Province of South Africa. Research in Microbiology, 160(8), 531-537. https://doi.org/10.1016/j.resmic.2009.08.007.
  5. DeVries SL, Zhang P (2016) Antibiotics and the terrestrial nitrogen cycle: a review. Current Pollution Reports, 2(1), 51-67. https://doi.org/10.1007/s40726-016-0027-3.
  6. Bennett PM (2008) Plasmid encoded antibiotic resistance: Acquisition and transfer of antibiotic resistance genes in bacteria. British Journal of Pharmacology, 153(S1), S347-S357. https://doi.org/10.1038/sj.bjp.0707607.
  7. Normark BH, Normark S (2002) Evolution and spread of antibiotic resistance. Journal of Internal Medicine, 252(2), 91-106. https://doi.org/10.1046/j.1365-2796.2002.01026.x.
  8. Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, Nisar MA, Alvi RF, Aslam MA et al. (2018) Antibiotic resistance: a rundown of a global crisis. Infection and Drug Resistance, 11, 1645. https://doi.org/10.2147/IDR.S173867.
  9. Kearney J (2010) Food consumption trends and drivers. Philosophical Transactions of The Royal Society B: Biological Sciences, 365(1554), 2793-2807. https://doi.org/10.1098/rstb.2010.0149.
  10. Schar D, Klein EY, Laxminarayan R, Gilbert M, Van Boeckel TP (2020) Global trends in antimicrobial use in aquaculture. Scientific Reports, 10(1), 1-9. https://doi.org/10.1038/s41598-020-78849-3.
  11. Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, Teillant A, Laxminarayan, R (2015) Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences, 112(18), 5649-5654. https://doi.org/10.1073/pnas.1503141112.
  12. Tortorella E, Tedesco P, Palma Esposito F, January GG, Fani R, Jaspars M, De Pascale D (2018) Antibiotics from deep-sea microorganisms: Current discoveries and perspectives. Marine Drugs, 16(10), 355. https://doi.org/10.3390/md16100355.
  13. Van Goethem MW, Pierneef R, Bezuidt OK, Van De Peer Y, Cowan DA, Makhalanyane TP (2018) A reservoir of 'historical'antibiotic resistance genes in remote pristine Antarctic soils. Microbiome, 6(1), 1-12. https://doi.org/10.1186/s40168-018-0424-5.
  14. Michael I, Rizzo L, McArdell CS, Manaia CM, Merlin C, Schwartz T, Dagot C, Fatta-Kassinos D (2013) Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review. Water Research, 47(3), 957-995. https://doi.org/10.1016/j.watres.2012.11.027.
  15. Alonso CA, Dominguez C, Heras J, Mata E, Pascual V, Torres C, Zarazaga M (2017) Antibiogramj: A tool for analysing images from disk diffusion tests. Computer Methods and Programs in Biomedicine, 143, 159-169. https://doi.org/10.1016/j.cmpb.2017.03.010.
  16. Herlemann DP, Labrenz M, Jurgens K, Bertilsson S, Waniek JJ, Andersson AF (2011) Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. The ISME Journal, 5(10), 1571-1579. https://doi.org/10.1038/ismej.2011.41.
  17. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Applied and Environmental Microbiology, 79(17), 5112-5120. https://doi.org/10.1128/AEM.01043-13.
  18. Spring S, Scheuner C, Goker M, Klenk HP (2015) A taxonomic framework for emerging groups of ecologically important marine gammaproteobacteria based on the reconstruction of evolutionary relationships using genome-scale data. Frontiers in Microbiology, 6, 281. https://doi.org/10.3389/fmicb.2015.00281.
  19. Khang Y, Ahn M (2015) Phylogenetic diversity of marine bacteria dependent on the port environment around the Ulleng Island. Korean Journal of Microbiology, 51(3), 312-317. https://doi.org/10.7845/kjm.2015.5040.
  20. Simonato F, Gomez-Pereira PR, Fuchs BM, Amann R (2010) Bacterioplankton diversity and community composition in the Southern Lagoon of Venice. Systematic and Applied Microbiology, 33(3), 128-138. https://doi.org/10.1016/j.syapm.2009.12.006.
  21. Igbinosa EO, Okoh AI (2008) Emerging Vibrio species: an unending threat to public health in developing countries. Research in Microbiology, 159(7-8), 495-506. https://doi.org/10.1016/j.resmic.2008.07.001.
  22. Paruch L, Paruch AM, Eiken HG, Sorheim R (2019) Aquatic microbial diversity associated with faecal pollution of Norwegian waterbodies characterized by 16S rRNA gene amplicon deep sequencing. Microbial Biotechnology, 12(6), 1487-1491. https://doi.org/10.1111/1751-7915.13461.
  23. Huerta B, Marti E, Gros M, Lopez P, Pompeo M, Armengol J, Barcelo D, Balcazar JL, Sara RodriguezMozaz S et al. (2013) Exploring the links between antibiotic occurrence, antibiotic resistance, and bacterial communities in water supply reservoirs. Science of the Total Environment, 456, 161-170. https:// doi.org/10.1016/j.scitotenv.2013.03.071.
  24. Lanza VF, Tedim AP, Martinez JL, Baquero F, Coque TM (2015) The plasmidome of Firmicutes: impact on the emergence and the spread of resistance to antimicrobials. Microbiology Spectrum, 3(2), 3.2.24. https://doi.org/10.1128/microbiolspec.PLAS-0039-2014.
  25. Matamp N, Bhat SG (2019) Phage endolysins as potential antimicrobials against multidrug resistant Vibrio alginolyticus and Vibrio parahaemolyticus: Current status of research and challenges ahead. Microorganisms, 7(3), 84. https://doi.org/10.3390/microorganisms7030084.
  26. Spear JB, Fuhrer J, Kirby BD (1988) Achromobacter xylosoxidans (Alcaligenes xylosoxidans subsp. xylosoxidans) bacteremia associated with a well-water source: Case report and review of the literature. Journal of Clinical Microbiology, 26(3), 598-599. https://doi.org/10.1128/jcm.26.3.598-599.1988.
  27. Hudzicki J (2009) Kirby-Bauer Disk Diffusion Susceptibility Test Protocol. Washington, DC: American Society for Microbiology [Online]. Available at: https://www.asm.org/Protocols/Kirby-Bauer-DiskDiffusion-SusceptibilityTest-Pro.
  28. Dalsgaard I (2001) Selection of media for antimicrobial susceptibility testing of fish pathogenic bacteria. Aquaculture, 196(3-4), 267-275. https://doi.org/10.1016/S0044-8486(01)00538-5.
  29. Sandsdalen E, Haug T, Stensvag K, Styrvold OB (2003) The antibacterial effect of a polyhydroxylated fucophlorethol from the marine brown alga, Fucus vesiculosus. World Journal of Microbiology and Biotechnology, 19(8), 777-782. https://doi.org/10.1023/A:1026052715260.
  30. Baker-Austin C, McArthur JV, Tuckfield RC, Najarro M, Lindell AH, Gooch J, Stepanauskas R (2008) Antibiotic resistance in the shellfish pathogen Vibrio parahaemolyticus isolated from the coastal water and sediment of Georgia and South Carolina, USA. Journal of Food Protection, 71(12), 2552-2558. https://doi.org/10.4315/0362-028X-71.12.2552.
  31. Wright GD, Sutherland AD (2007) New strategies for combating multidrug-resistant bacteria. Trends in Molecular Medicine, 13(6), 260-267. https://doi.org/10.1016/j.molmed.2007.04.004.