과제정보
이 논문은 2019년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업(NRF-2019R1C1C1011710)이고, 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구 과제임(No. 20199710100060).
참고문헌
- Banerjee S, Carlin BP, and Gelfand AE (2014). Hierarchical Modeling and Analysis for Spatial Data, Chapman & Hall/CRC, Boca Raton, FL.
- Bohning D (1998). Zero-inflated Poisson models and C.A.MAN: A tutorial collection of evidence, Biometrical Journal, 40, 833-843. https://doi.org/10.1002/(SICI)1521-4036(199811)40:7<833::AID-BIMJ833>3.0.CO;2-O
- Casella G and George EI (1992). Explaining the Gibbs sampler, The American Statistician, 46, 167-174. https://doi.org/10.2307/2685208
- Chen MH, Dey DK, and Shao QM (1999). A new skewed link model for dichotomous quantal response data, Journal of the American Statistical Association, 94, 1172-1186. https://doi.org/10.1080/01621459.1999.10473872
- Chib S and Greenberg E (1995). Understanding the Metropolis-Hastings algorithm, The American Statistician, 49, 327-335. https://doi.org/10.2307/2684568
- Fahrmeir L and Osuna EL (2006). Structured additive regression for overdispersed and zero-inflated count data, Applied Stochastic Models in Business and Industry, 22, 351-369. https://doi.org/10.1002/asmb.631
- Gelman A, Meng XL, and Stern H (1996). Posterior predictive assessment of model fitness via realized discrepancies, Statistica Sinica, 6, 733-807.
- Geweke J (1992). Evaluating the accuracy of sampling-based approaches to the calculations of posterior moments, Bayesian statistics, 4, 641-649.
- Ghosh SK, Mukhopadhyay P, and Lu JC (2006). Bayesian analysis of zero-inflated regression models, Journal of Statistical Planning and Inference, 136, 1360-1375. https://doi.org/10.1016/j.jspi.2004.10.008
- Gilks WR and Wild P (1992). Adaptive rejection sampling for Gibbs sampling, Journal of the Royal Statistical Society: Series C (Applied Statistics), 41, 337-348. https://doi.org/10.2307/2347565
- Gschlossl S and Czado C (2008). Modelling count data with overdispersion and spatial effects, Statistical papers, 49, 531-552. https://doi.org/10.1007/s00362-006-0031-6
- Lambert D (1992). Zero-inflated Poisson regression, with an application to defects in manufacturing, Technometrics, 49, 1-14. https://doi.org/10.1198/004017006000000372
- Min Y and Agresti A (2005). Random effect models for repeated measures of zero-inflated count data, Statistical Modelling, 5, 1-19. https://doi.org/10.1191/1471082X05st084oa
- Neelon B (2019). Bayesian zero-inflated negative binomial regression based on Polya-Gamma mixtures, Bayesian Analysis, 14, 829-855. https://doi.org/10.1214/18-BA1132
- Pillow J and Scott J (2012). Fully Bayesian inference for neural models with negative-binomial spiking, Advances in Neural Information Processing Systems, 25, 1898-1906.
- Polson NG, Scott JG, and Windle J (2013). Bayesian inference for logistic models using Polya-Gamma latent variables, Journal of the American statistical Association, 108, 1339-1349. https://doi.org/10.1080/01621459.2013.829001
- Rodrigues J (2003). Bayesian analysis of zero-inflated distributions, Communications in Statistics-Theory and Methods, 32, 281-289. https://doi.org/10.1081/STA-120018186
- Rubin DB (1984). Bayesianly justifiable and relevant frequency calculations for the applied statistician, The Annals of Statistics, 12, 1151-1172. https://doi.org/10.1214/aos/1176346785
- Yau KK, Wang K, and Lee AH (2003). Zero-inflated negative binomial mixed regression modeling of overdispersed count data with extra zeros, Biometrical Journal: Journal of Mathematical Methods in Biosciences, 45, 437-452. https://doi.org/10.1002/bimj.200390024
- Zhou M and Carin L (2013). Negative binomial process count and mixture modeling, IEEE Transactions on Pattern Analysis and Machine Intelligence, 37, 307-320. https://doi.org/10.1109/TPAMI.2013.211