DOI QR코드

DOI QR Code

Wave propagation in a FG circular plate via the physical neutral surface concept

  • She, Gui-Lin (College of Mechanical and Vehicle Engineering, Chongqing University) ;
  • Ding, Hao-Xuan (College of Mechanical and Vehicle Engineering, Chongqing University) ;
  • Zhang, Yi-Wen (College of Mechanical and Vehicle Engineering, Chongqing University)
  • 투고 : 2021.06.01
  • 심사 : 2022.01.21
  • 발행 : 2022.04.25

초록

In this paper, the physical neutral surface concept is applied to study the wave propagation of functionally graded (FG) circular plate, the wave equation is derived by Hamiltonian variational principle and the first-order shear deformation plate model. Then, we convert the equations to dimensionless equations. The exact solution of wave propagation problem is obtained by Laplace integral transformation, the first order Hankel integral transformation and the zero order Hankel integral transformation. The results obtained by the current model are very close to those obtained in the existing literature, which indicates the correctness and reliability of this study. Moreover, the effects of the functionally graded index parameters and pore volume fraction on the wave propagation are also discussed in detail.

키워드

참고문헌

  1. Ahmadi, H. (2019), "Nonlinear primary resonance of imperfect spiral stiffened functionally graded cylindrical shells surrounded by damping and nonlinear elastic foundation", Eng. Comput., 35, 1491-1505. http://doi.org/10.1007/s00366-018-0679-2.
  2. Akgoz, B. and Civalek, O . (2015), "A novel microstructure-dependent shear deformable beam model", Int. J. Mech. Sci., 99, 10-20. https://doi.org/10.1016/j.ijmecsci.2015.05.003.
  3. Akgoz, B. and Civalek, O. (2017), "Effects of thermal and shear deformation on vibration response of functionally graded thick composite microbeams", Compos. Part B: Eng., 129, 77-87. https://doi.org/10.1016/j.compositesb.2017.07.024.
  4. Alnujaie, A., Akba, E.D., Eltaher, M. and Assie, A. (2021), "Forced vibration of a functionally graded porous beam resting on viscoelastic foundation", Geomech. Eng., 24(1), 91. http://doi.org/10.12989/gae.2021.24.1.091.
  5. Amar, L.H.H., Kaci, A., Yeghnem, R. and Tounsi, A. (2018), "A new four-unknown refined theory based on modified couplestress theory for size-dependent bending and vibration analysisof functionally graded micro-plate", Steel Compos. Struct., 26(1), 89-102. http://doi.org/10.12989/scs.2018.26.1.089.
  6. Anirudh, B., Zineb, T.B., Polit, O., Ganapathi, M. and Prateek, G. (2020), "Nonlinear bending of porous curved beams reinforced by functionally graded nano composite graphene platelets applying an efficient shear flexible finite element approach", Int. J. Nonlin. Mech., 119, 103346. https://doi.org/10.1016/j.ijnonlinmec.2019.103346.
  7. Arefi, M., Bidgoli, E.M.R., Dimitri, R., Bacciocchi, M. and Tornabene, F. (2018), "Application of sinusoidal shear deformation theory and physical neutral surface to analysis of functionally graded piezoelectric plate", Compos. Part B.-Eng., 151, 35-50. http://doi.org/10.1016/j.compositesb.2018.05.050.
  8. Asiri, S.A., Akba, E.D. and Eltaher, M. (2020), "Damped dynamic responses of a layered functionally graded thick beam under a pulse load", Struct. Eng. Mech., 75(6), 713-722. http://doi.org/10.12989/sem.2020.75.6.713.
  9. Attia, M.A. and Mohamed, S.A. (2020a), "Thermal vibration characteristics of pre/post-buckled bi-directional functionally graded tapered microbeams based on modified couple stress Reddy beam theory", Eng. Comput., 1-27. https://doi.org/10.1007/s00366-020-01188-4.
  10. Attia, M.A. and Mohamed, S.A. (2020b), "Nonlinear thermal buckling and postbuckling analysis of bidirectional functionally graded tapered microbeams based on Reddy beam theory", Eng. Comput., 1-30. https://doi.org/10.1007/s00366-020-01080-1.
  11. Babaei, H. and Eslami, M.R. (2021), "Nonlinear analysis of thermal-mechanical coupling bending of FGP infinite length cylindrical panels based on PNS and NSGT", Appl. Math. Model., 91, 1061-1080. https://doi.org/10.1016/j.apm.2020.10.004.
  12. Babaei, H., Kiani, Y. and Eslami, M.R. (2019), "Large amplitude free vibrations of long FGM cylindrical panels on nonlinear elastic foundation based on physical neutral surface", Compos. Struct., 220, 888-898. https://doi.org/10.1016/j.compstruct.2019.03.064.
  13. Barretta, R., Ali Faghidian, S. and Marotti de Sciarra, F., Penna, R. and Pinnola F.P. (2020), "On torsion of nonlocal Lam strain gradient FG elastic beams", Compos. Struct., 233, 111550. https://doi.org/10.1016/j.compstruct.2019.111550.
  14. Chemi, A., Heireche, H., Zidour, M., Rakrak, K. and Bousahla, A.A. (2015), "Critical buckling load of chiral double-walled carbon nanotube using non-local theory elasticity", Adv. Nano Res., 3(4), 193-206. http://doi.org/10.12989/anr.2015.3.4.193.
  15. Civalek, M., Dastjerdi, S., Akba, E.D. and Akgz, B. (2021), "Vibration analysis of carbon nanotube-reinforced composite microbeams", Math. Meth. Appl. Sci., https://doi.org/10.1002/mma.7069.
  16. Civalek, M., Uzun, B., Yayl, M.Z. and Akgz, B. (2020), "Size-dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method", Eur. Phys. J. Plus, 135(4), 381. https://doi.org/10.1140/epjp/s13360-020-00385-w.
  17. Dehrouyeh-Semnani, A.M., Dehdashti, E., Yazdi, M. and Nikkhah-Bahrami, M. (2019), "Nonlinear thermo-resonant behavior of fluid-conveying FG pipes", Int. J. Eng. Sci., 144, 103141. https://doi.org/10.1016/j.ijengsci.2019.103141
  18. Ding, H.X. and She, G.L. (2021), "A higher-order beam model for the snap-buckling analysis of FG pipes conveying fluid", Struct. Eng. Mech., 80(1), 63-72. http://doi.org/10.12989/sem.2021.80.1.063.
  19. Eltaher, M. and Akba, E.D. (2020), "Transient response of 2d functionally graded beam structure", Struct. Eng. Mech., 75(3), 357-367. https://doi.org/10.12989/sem.2020.75.3.357.
  20. Eltaher, M.A., Omar, F.A., Abdalla, W.S., Kabeel, A.M. and Alshorbagy, A.E. (2020), "Mechanical analysis of cutout piezoelectric nonlocal nanobeam including surface energy effects", Struct. Eng. Mech., 76(1), 141-151. https://doi.org/10.12989/sem.2020.76.1.141.
  21. Faghidian, S.A. (2016), "Unified formulation of the stress field of saint-Venant's flexure problem for symmetric cross-sections", Int. J. Mech. Sci., 111-112, 65-72. https://doi.org/10.1016/j.ijmecsci.2016.04.003.
  22. Faghidian, S.A. (2017), "Unified formulations of the shear coefficients in timoshenko beam theory", J. Eng. Mech., 143(9), 06017013. http://doi.org/10.1061/(ASCE)EM.1943-7889.0001297.
  23. Faleh, N.M., Ahmed, R.A. and Fenjan, R.M. (2018), "On vibrations of porous FG nanoshells", Int. J. Eng. Sci., 133, 1-14. https://doi.org/10.1016/j.ijengsci.2018.08.007.
  24. Golmakani, M.E.,Malikan, M. and Pour, S.G. (2021), "Bending analysis of functionally graded nanoplates based on a higher-order shear deformation theory using dynamic relaxation method", Continuum Mech. Thermodyn., 1-20. https://doi.org/10.1007/s00161-021-00995-4.
  25. Heydari, A. (2018), "Exact vibration and buckling analyses ofarbitrary gradation of nano-higher order rectangular beam", Steel Compos. Struct., 28(5), 589-606. http://doi.org/10.12989/scs.2018.28.5.589.
  26. Jalaei, M.H. and Civalek, O. (2019), "On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam", Int. J. Eng. Sci., 143, 14-32. https://doi.org/10.1016/j.ijengsci.2019.06.013.
  27. Kumar, S., Ranjan, V. and Jana, P. (2018), "Free vibration analysis of thin functionally graded rectangular plates using the dynamic stiffness method", Compos. Struct., 197, 39-53. http://doi.org/10.1016/j.compstruct.2018.04.085.
  28. Lu, L., She, G.L. and Guo, X. (2021), "Size-dependent postbuckling analysis of graphene reinforced composite microtubes with geometrical imperfection", Int. J. Mech. Sci., 199, 106428. https://doi.org/10.1016/j.ijmecsci.2021.106428.
  29. Malikan, M. and Eremeyev, V.A. (2020), "A new hyperbolic-polynomial higher-order elasticity theory for mechanics of thick FGM beams with imperfection in the material composition", Compos. Struct., 249, 112486. https://doi.org/10.1016/j.compstruct.2020.112486.
  30. Malikan, M., Wiczenbach, T. and Eremeyev, V.A. (2021), "Thermal buckling of functionally graded piezomagnetic micro-and nanobeams presenting the flexomagnetic effect", Continuum Mech. Thermodyn., 1-16. https://doi.org/10.1007/s00161-021-01038-8.
  31. Nguyen, V.L., Tran, M.T., Nguyen, V.L. and Le, Q.H. (2021), "Static behaviour of functionally graded plates resting on elastic foundations using neutral surface concept", Arch. Mech. Eng., 68(1), 5-22. https://doi.org/10.24425/ame.2020.131706.
  32. Radic, N. (2018), "On buckling of porous double-layered FG nanoplates in the Pasternak elastic foundation based on nonlocal strain gradient elasticity", Compos. Part B.-Eng., 153, 465-479. https://doi.org/10.1016/j.compositesb.2018.09.014.
  33. Rahman, A., Abd-El-Mottaleb, H.E. and Eltaher, M. (2020), "On bending analysis of perforated microbeams including the microstructure effects", Struct. Eng. Mech., 76(6), 765-779. https://doi.org/10.12989/sem.2020.76.6.765.
  34. She, G.L. (2021), "Guided wave propagation of porous functionally graded plates: The effect of thermal loadings", J. Therm. Stress., 44(10), 1289-1305. https://doi.org/10.1080/01495739.2021.1974323.
  35. She, G.L., Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407.
  36. Sun, D. and Luo, S.N. (2012), "Wave propagation and transient response of a functionally graded material plate under a point impact load in thermal environments", Appl. Math. Model., 36(1), 444-462. https://doi.org/10.1016/j.apm.2011.07.023.
  37. Yahia, S.A., Atmane, H.A., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143.
  38. Zenkour, A.M. (2018), "A quasi-3D refined theory for functionally graded single-layered and sandwich plates with porosities", Compos. Struct., 201, 38-48. https://doi.org/10.1016/j.compstruct.2018.05.147.
  39. Zenkour, A.M. and Radwan, A.F. (2019), "Bending response of FG plates resting on elastic foundations in hygro thermal environment with porosities", Compos. Struct., 213, 133-143. https://doi.org/10.1016/j.compstruct.2019.01.065.
  40. Zhang, D.G. and Zhou, H.M. (2015), "Nonlinear bending analysis of FGM circular plates based on physical neutral surface and higher-order shear deformation theory", Aerosp. Sci. Technol., 41, 90-98. https://doi.org/10.1016/j.ast.2014.12.016.
  41. Zhang, Y.Y., Wang, X.Y., Zhang, X., Shen, H.M. and She, G.L. (2021), "On snap-buckling of FG-CNTR curved nanobeams considering surface effects", Steel Compos. Struct., 38(3), 293-304. https://doi.org/10.12989/scs.2021.38.3.293.
  42. Zouatnia, N., Hadji, L. and Kassoul, A. (2017), "A refined hyperbolic shear deformation theory for bending of functionally graded beams based on neutral surface position", Struct. Eng. Mech., 63(5), 683-689. http://doi.org/10.12989/sem.2017.63.5.683.