References
- Aggelis, D.G., Soulioti, D.V., Sapouridis, N., Barkoula, N.M., Paipetis, A.S. and Matikas, T.E. (2011), "Acoustic emission characterization of the fracture process in fibre reinforced concrete", Constr. Build. Mater.als, 25, 4126-4131. https://doi.org/10.1016/j.conbuildmat.2011.04.049
- Aggelis, D.G., Mpalaskas, A.C. and Matikas, T.E. (2013), "Acoustic signature of different fracture modes in marble and cementitious materials under flexural load", Mech. Res. Commun., 47, 39-43. https://doi.org/10.1016/j.mechrescom.2012.11.007
- Altindag, R. (2000), "The role of rock brittleness on analysis of percussive drilling performance", Proceedings of 5th National Rock Mechanics Symposium, Turkey, pp. 105-112. [In Turkish]
- Asadizadeh, M., Babanouri, N., Nowak, S. and Sherizah, T. (2021), "The evolution of dynamic energy during drop hammer testing of Brazilian disk with non-persistent joints: an extensive experimental investigation", Theor. Appl. Fract. Mech., p. 103162. https://doi.org/10.1016/j.tafmec.2021.103162
- Basu, A., Mishra, D.A. and Roychowdhury, K. (2013), "Rock failure modes under uniaxial compression, Brazilian, and point load tests", Bull. Eng. Geol. Environ., 72(3-4), 457-475. https://doi.org/10.1007/s10064-013-0505-4
- Bieniawski, Z.T. (1967), "Mechanism of brittle fracture of rock. Part II - experimental studies", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 4(4), 407-423. https://doi.org/10.1016/0148-9062(67)90031-9
- Blindheim, O.T. and Bruland, A. (1998), "Boreability testing, Norwegian TBM tunnelling 30 years of Experience with TBMs in Norwegian Tunnelling", Norwegian Soil and Rock Engineering Association, Publication, pp. 29-34.
- Bobet, A. and Einstein, H.H. (1998), "Fracture coalescence in rock type materials under uniaxial and biaxial", Int. J. Rock Mech. Min. Sci., 35(7), 863-888. https://doi.org/10.1016/S0148-9062(98)00005-9
- Cai, M. and Liu, D. (2009), "Study of failure mechanisms of rock under compressive - shear loading using real-time laser holography", Int. J. Rock Mech. Min. Sci., 46, 59-68. https://doi.org/10.1016/j.ijrmms.2008.03.010
- Cai, M., Kaiser, P.K., Suorineni, F. and Su, K. (2007), "A study on the dynamic behavior of the Meuse/Haute-Marne argillite", Physics and Chemistry of the Earth, Parts A/B/C, 32(8-14), 907-916. https://doi.org/10.1016/j.pce.2006.03.007
- Chen, G., Li, T., Wang, W., Guo, F. and Yin, H. (2017), "Characterization of the brittleness of hard rock at different temperatures using uniaxial compression tests", Geomech. Eng., Int. J., 13(1), 63-77. https://doi.org/10.12989/gae.2017.13.1.063
- Chen, S.J., Ren, M.Z., Wang, F., Yin, D.W. and Chen, D.H. (2020), "Mechanical properties and failure mechanisms of sandstone with pyrite concretions under uniaxial compression", Geomech. Eng., Int. J., 22(5), 385-396. http://doi.org/10.12989/gae.2020.22.5.385
- Cho, N.A., Martin, C.D. and Sego, D.C. (2007), "A clumped particle model for rock", Int. J. Rock Mech. Min. Sci., 44(7), 997-1010. https://doi.org/10.1016/j.ijrmms.2007.02.002
- Dursun, A.E. and Gokay, M.K. (2016), "Cuttability assessment of selected rocks through different brittleness values", Rock Mech. Rock Eng., 49(4), 1173-1190. https://doi.org/10.1007/s00603-015-0810-2
- Fakhimi, A. and Hemami, B. (2015), "Axial splitting of rocks under uniaxial compression", Int. J. Rock Mech. Min. Sci., 79, 124-134. https://doi.org/10.1016/j.proeng.2017.05.226
- Fan, L.F., Wu, Z.J., Wan, Z. and Gao, J.W. (2017), "Experimental investigation of thermal effects on dynamic behavior of granite", Appl. Thermal Eng., 125, 94-103. https://doi.org/10.1016/j.applthermaleng.2017.07.007
- Fan, L., Gao, J., Du, X. and Wu, Z. (2020), "Spatial gradient distributions of thermal shock-induced damage to granite", J. Rock Mech. Geotech. Eng., 12(5), 917-926. https://doi.org/10.1016/j.jrmge.2020.05.004
- Fan, L.F., Yang, K.C., Wang, M., Wang, L.J. and Wu, Z.J. (2021), "Experimental study on wave propagation through granite after high-temperature treatment", Int. J. Rock Mech. Min. Sci., 148, 104946. https://doi.org/10.1016/j.ijrmms.2021.104946
- Gao, J., Xi, Y., Fan, L. and Du, X. (2021), "Real-time visual analysis of the microcracking behavior of thermally damaged granite under uniaxial loading", Rock Mech. Rock Eng., 54(12), 6549-6564. https://doi.org/10.1007/s00603-021-02639-0
- Ghazvinian, A., Nejati, H.R., Sarfarazi, V. and Hadei, M.R. (2013), "Mixed mode crack propagation in low brittle rock-like materials", Arab. J. Geosci., 6(11), 4435-4444. https://doi.org/10.1007/s12517-012-0681-8
- Gong, Q.M. and Zhao, J. (2007), "Influence of rock brittleness on TBM penetration rate in Singapore granite", Tunnell. Undergr. Space Technol., 22(3), 317-324. https://doi.org/10.1016/j.tust.2006.07.004
- Gramberg, J. (1989), A Non-conventional View on Rock Mechanics, Rotterdam: Balkema.
- Haeri, H. and Marji, M.F. (2016), "Simulating the crack propagation and cracks coalescence underneath TBM disc cutters", Arab. J. Geosci., 9(2), 124. https://doi.org/10.1007/s12517-015-2137-4
- Heidari, M., Khanlari, G.R., Torabi-Kaveh, M., Kargarian, S. and Saneie, S. (2014), "Effect of porosity on rock brittleness", Rock Mech. Rock Eng., 47(2), 785-790. https://doi.org/10.1007/s00603-013-0400-0
- Hoek, E. and Bieniawski, Z.T. (1965), "Brittle fracture propagation under compression", Int. J. Fract. Mech., 1, 137-55. https://doi.org/10.1007/BF00186851
- Hucka, V. and Das, B. (1974), "Brittleness determination of rocks by different methods", Int. J. Rock Mech. Min. Sci. Geomech. Abstracts, 11(10), 389-392. https://doi.org/10.1016/0148- 9062(74)91109-7
- Imani, M., Nejati, H.R. and Goshtasbi, K. (2017), "Dynamic response and failure mechanism of Brazilian disk specimens at high strain rate", Soil Dyn. Earthq. Eng., 100, 261-269. https://doi.org/10.1016/j.soildyn.2017.06.007
- ISRM (1981), In: Brown, E.T. (ed.), Suggested methods: rock characterization, testing and monitoring, Pergamon, Oxford, p. 211.
- Itasca Consulting Group (2008), PFC2D (particle flow code in 2 dimensions), version 4.0, manual. Minneapolis: ICG.
- Jaeger, J.C., Cook, N.G. and Zimmerman, R. (2009), Fundamentals of Rock Mechanics, John Wiley & Sons.
- Kahraman, S. (2002), "Correlation of TBM and drilling machine performances with rock brittleness", Eng. Geol., 65(4), 269-283. https://doi.org/10.1016/S0013-7952(01)00137-5
- Kahraman, S. and Altindag, R. (2004), "A brittleness index to estimate fracture toughness", Int. J. Rock Mech. Min. Sci., 2(41), 343-348. https://doi.org/10.1016/j.ijrmms.2003.07.010
- Khodayar, A. and Nejati, H.R. (2018), "Effect of thermal-induced microcracks on the failure mechanism of rock specimens", Comput. Concrete, Int. J., 22(1), 93-100. http://doi.org/10.12989/cac.2018.22.1.093
- Kim, J.S., Kim, G.Y., Baik, M.H., Finsterle, S. and Cho, G.C. (2019), "A new approach for quantitative damage assessment of in-situ rock mass by acoustic emission", Geomech. Eng., Int. J., 18(1), 11-20. http://doi.org/10.12989/gae.2019.18.1.011
- Lavrov, A. (2003), "The Kaiser effect in rocks: principles and stress estimation techniques", Int. J. Rock Mech. Min. Sci., 40(2), 151-171. https://doi.org/10.1016/s1365-1609(02)00138-7
- Mardalizad, A., Scazzosi, R., Manes, A. and Giglio, M. (2018), "Testing and numerical simulation of a medium strength rock material under unconfined compression loading", J. Rock Mech. Geotech. Eng., 10(2), 197-211. https://doi.org/10.1016/j.jrmge.2017.11.009
- Marji, M.F. (2014), "Numerical analysis of quasi-static crack branching in brittle solids by a modified displacement discontinuity method", Int. J. Solids Struct., 51(9), 1716-1736. https://doi.org/10.1016/j.ijsolstr.2014.01.022
- Marji, M.F. (2015), "Simulation of crack coalescence mechanism underneath single and double disc cutters by higher order displacement discontinuity method", J. Central South Univ., 22(3), 1045-1054. https://doi.org/10.1007/s11771-015-2615-6
- Meng, F., Zhou, H., Zhang, C., Xu, R. and Lu, J. (2015), "Evaluation methodology of brittleness of rock based on post-peak stress- strain curves", Rock Mech. Rock Eng., 48(5), 1787-1805. https://doi.org/10.1007/s00603-014-0694-6
- Mughieda, O.S. and Khawaldeh, I. (2006), "Coalescence of offset rock joints under biaxial loading", Geotech. Geol. Eng., 24, 985-999. https://doi.org/10.1007/s10706-005-8352-0
- Nazerigivi, A., Nejati, H.R., Ghazvinian, A. and Najigivi, A. (2017), "Influence of nano-silica on the failure mechanism of concrete specimens", Comput. Concrete, Int. J., 19(4), 429-434. https://doi.org/10.12989/cac.2017.19.4.429
- Nazerigivi, A., Nejati, H.R., Ghazvinian, A. and Najigivi, A. (2018), "Effects of SiO2 nanoparticles dispersion on concrete fracture toughness", Constr. Build. Mater., 171, 672-679. https://doi.org/10.1016/j.conbuildmat.2018.03.224
- Nejati, H.R. and Ghazvinian, A. (2014), "Brittleness effect on rock fatigue damage evolution", Rock Mech. Rock Eng., 47(5), 1839-1848. https://doi.org/10.1007/s00603- 013-0486-4
- Nejati, H.R. and Moosavi, S.A. (2017), "A new brittleness index for estimation of rock fracture toughness", J. Min. Environ., 8(1), 83-91. https://doi.org/10.22044/JME.2016.579
- Nejati, H.R., Nazerigivi, A., Imani, M. and Karrech, A. (2020), "Monitoring of fracture propagation in brittle materials using acoustic emission techniques-A review", Comput. Concrete, Int. J., 25(1), 15-27. http://doi.org/10.12989/cac.2020.25.1.015
- Panaghi, K., Golshani, A. and Takemura, T. (2015), "Rock failure assessment based on crack density and anisotropy index variations during triaxial loading tests", Geomech. Eng., Int. J., 9(6), 793-813. http://doi.org/10.12989/gae.2015.9.6.793
- Park, C.H. and Bobet, A. (2009), "Crack coalescence in specimens with open and closed flaws: A comparison", Int. J. Rock Mech. Min. Sci., 46, 819-829. https://doi.org/10.1016/j.ijrmms.2009.02.006
- Paul, B. (1968), "Macroscopic criteria for plastic flow and brittle fracture", Fracture, 2, 313-496.
- Potyondy, D.O. (2010), "A grain-based model for rock: approaching the true microstructure", Proceedings of Rock Mechanics in the Nordic Countries, pp. 9-12.
- Potyondy, D.O. (2012), "A flat-jointed bonded-particle material for hard rock", Proceedings of the 46th US Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association.
- Potyondy, D. (2013), PFC3D Flat-Joint Contact Model (version 1), Itasca Consulting Group, Inc., Minneapolis, MN, USA, Technical Memorandum ICG7234-L, June 25, 2013.
- Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 41(8), 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011
- Protodyakonov, M.M. (1962), "Mechanical properties and drillability of rocks", Proceedings of the 5th Symposium on Rock Mechanics, University of Minnesota Minneapolis, MN, USA, pp. 103-118.
- Protodyakonov, M.M. (1963), "Mechanical properties and drillability of rocks", Proceedings of the 5th Symposium Rock Mechanics, University of Minnesota, pp. 103-118.
- Ren, X., Chen, J.S., Li, J., Slawson, T.R. and Roth, M.J. (2011), "Micro-cracks informed damage models for brittle solids", Int. J. Solids Struct., 48(10), 1560-1571. https://doi.org/10.1016/j.ijsolstr.2011.02.001
- Sagong, M. and Bobet, A. (2002)," Coalescence of multiple flaws in a rock-model material in uniaxial compression", Int. J. Rock Mech. Min. Sci., 39, 229-241. https://doi.org/10.1016/S1365-1609(02)00027-8
- Stefanov, Y.P. (2008), "Numerical modeling of deformation and failure of sandstone specimens", J. Min. Sci., 44(1), 64-72. https://doi.org/10.1016/0013-7944(94)00201-R
- Szwedzicki, T. and Shamu, W. (1999), "The effect of material discontinuities on strength of rock samples", Proceedings of Australasian Institute of Mining and Metallurgy, 304(1), 23-28.
- Villaescusa, E. (2014), Geotechnical Design for Sublevel Open Stopping, CRC Press.
- Wang, S.Y., Sloan, S.W., Sheng, D.C., Yang, S.Q. and Tang, C.A. (2014), "Numerical study of failure behaviour of pre-cracked rock specimens under conventional triaxial compression", Int. J. Solids Struct., 51(5), 1132-1148. https://doi.org/10.1016/j.ijsolstr.2013.12.01
- Wawersik, W. and Fairhurst, C. (1970), "A study of brittle rock fracture in laboratory compression experiments", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 7, 561-575. https://doi.org/10.1016/0148-9062(70)90007-0
- Wu, S. and Xu, X. (2016), "A study of three intrinsic problems of the classic discrete element method using flat-joint model", Rock Mech. Rock Eng., 49(5), 1813-1830. https://doi.org/10.1007/s00603-015-0890-z
- Xu, X., Wu, S., Gao, Y. and Xu, M. (2016), "Effects of microstructure and micro-parameters on Brazilian tensile strength using flat-joint model", Rock Mech. Rock Eng., 49(9), 3575-3595. https://doi.org/10.1007/s00603-016-1021-1
- Yarali, O. and Soyer, E. (2011), "The effect of mechanical rock properties and brittleness on drillability", Scientif. Res. Essays, 6(5), 1077-1088. https://doi.org/10.5897/SRE10.1004
- Yoshikawa, S. and Mogi, K. (1981), "A new method for estimation of the crustal stress from cored rock samples: laboratory study in the case of uniaxial compression", Tectonophysics, 74(3-4), 323-339. https://doi.org/10.1016/0040-1951(81)90196-7