DOI QR코드

DOI QR Code

Effect of brittleness on the micromechanical damage and failure pattern of rock specimens

  • Imani, Mehrdad (Rock Mechanics Division, School of Engineering, Tarbiat Modares University) ;
  • Nejati, Hamid Reza (Rock Mechanics Division, School of Engineering, Tarbiat Modares University) ;
  • Goshtasbi, Kamran (Rock Mechanics Division, School of Engineering, Tarbiat Modares University) ;
  • Nazerigivi, Amin (Rock Mechanics Division, School of Engineering, Tarbiat Modares University)
  • Received : 2020.12.17
  • Accepted : 2021.12.23
  • Published : 2022.04.25

Abstract

Failure patterns of rock specimens represent valuable information about the mechanical properties and crack evolution mechanism of rock. Several kinds of research have been conducted regarding the failure mechanism of brittle material, however; the influence of brittleness on the failure mechanism of rock specimens has not been precisely considered. In the present study, experimental and numerical examinations have been made to evaluate the physical and mechanical phenomena associated with rock failure mechanisms through the uniaxial compression test. In the experimental part, Unconfined Compressive Strength (UCS) tests equipped with Acoustic Emission (AE) have been conducted on rock samples with three different brittleness. Then, the numerical models have been calibrated based on experimental test results for further investigation and comparing the micro-cracking process in experimental and numerical models. It can be perceived that the failure mode of specimens with high brittleness is tensile axial splitting, based on the experimental evidence of rock specimens with different brittleness. Also, the crack growth mechanism of the rock specimens with various brittleness using discrete element modeling in the numerical part suggested that the specimens with more brittleness contain more tensile fracture during the loading sequences.

Keywords

References

  1. Aggelis, D.G., Soulioti, D.V., Sapouridis, N., Barkoula, N.M., Paipetis, A.S. and Matikas, T.E. (2011), "Acoustic emission characterization of the fracture process in fibre reinforced concrete", Constr. Build. Mater.als, 25, 4126-4131. https://doi.org/10.1016/j.conbuildmat.2011.04.049
  2. Aggelis, D.G., Mpalaskas, A.C. and Matikas, T.E. (2013), "Acoustic signature of different fracture modes in marble and cementitious materials under flexural load", Mech. Res. Commun., 47, 39-43. https://doi.org/10.1016/j.mechrescom.2012.11.007
  3. Altindag, R. (2000), "The role of rock brittleness on analysis of percussive drilling performance", Proceedings of 5th National Rock Mechanics Symposium, Turkey, pp. 105-112. [In Turkish]
  4. Asadizadeh, M., Babanouri, N., Nowak, S. and Sherizah, T. (2021), "The evolution of dynamic energy during drop hammer testing of Brazilian disk with non-persistent joints: an extensive experimental investigation", Theor. Appl. Fract. Mech., p. 103162. https://doi.org/10.1016/j.tafmec.2021.103162
  5. Basu, A., Mishra, D.A. and Roychowdhury, K. (2013), "Rock failure modes under uniaxial compression, Brazilian, and point load tests", Bull. Eng. Geol. Environ., 72(3-4), 457-475. https://doi.org/10.1007/s10064-013-0505-4
  6. Bieniawski, Z.T. (1967), "Mechanism of brittle fracture of rock. Part II - experimental studies", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 4(4), 407-423. https://doi.org/10.1016/0148-9062(67)90031-9
  7. Blindheim, O.T. and Bruland, A. (1998), "Boreability testing, Norwegian TBM tunnelling 30 years of Experience with TBMs in Norwegian Tunnelling", Norwegian Soil and Rock Engineering Association, Publication, pp. 29-34.
  8. Bobet, A. and Einstein, H.H. (1998), "Fracture coalescence in rock type materials under uniaxial and biaxial", Int. J. Rock Mech. Min. Sci., 35(7), 863-888. https://doi.org/10.1016/S0148-9062(98)00005-9
  9. Cai, M. and Liu, D. (2009), "Study of failure mechanisms of rock under compressive - shear loading using real-time laser holography", Int. J. Rock Mech. Min. Sci., 46, 59-68. https://doi.org/10.1016/j.ijrmms.2008.03.010
  10. Cai, M., Kaiser, P.K., Suorineni, F. and Su, K. (2007), "A study on the dynamic behavior of the Meuse/Haute-Marne argillite", Physics and Chemistry of the Earth, Parts A/B/C, 32(8-14), 907-916. https://doi.org/10.1016/j.pce.2006.03.007
  11. Chen, G., Li, T., Wang, W., Guo, F. and Yin, H. (2017), "Characterization of the brittleness of hard rock at different temperatures using uniaxial compression tests", Geomech. Eng., Int. J., 13(1), 63-77. https://doi.org/10.12989/gae.2017.13.1.063
  12. Chen, S.J., Ren, M.Z., Wang, F., Yin, D.W. and Chen, D.H. (2020), "Mechanical properties and failure mechanisms of sandstone with pyrite concretions under uniaxial compression", Geomech. Eng., Int. J., 22(5), 385-396. http://doi.org/10.12989/gae.2020.22.5.385
  13. Cho, N.A., Martin, C.D. and Sego, D.C. (2007), "A clumped particle model for rock", Int. J. Rock Mech. Min. Sci., 44(7), 997-1010. https://doi.org/10.1016/j.ijrmms.2007.02.002
  14. Dursun, A.E. and Gokay, M.K. (2016), "Cuttability assessment of selected rocks through different brittleness values", Rock Mech. Rock Eng., 49(4), 1173-1190. https://doi.org/10.1007/s00603-015-0810-2
  15. Fakhimi, A. and Hemami, B. (2015), "Axial splitting of rocks under uniaxial compression", Int. J. Rock Mech. Min. Sci., 79, 124-134. https://doi.org/10.1016/j.proeng.2017.05.226
  16. Fan, L.F., Wu, Z.J., Wan, Z. and Gao, J.W. (2017), "Experimental investigation of thermal effects on dynamic behavior of granite", Appl. Thermal Eng., 125, 94-103. https://doi.org/10.1016/j.applthermaleng.2017.07.007
  17. Fan, L., Gao, J., Du, X. and Wu, Z. (2020), "Spatial gradient distributions of thermal shock-induced damage to granite", J. Rock Mech. Geotech. Eng., 12(5), 917-926. https://doi.org/10.1016/j.jrmge.2020.05.004
  18. Fan, L.F., Yang, K.C., Wang, M., Wang, L.J. and Wu, Z.J. (2021), "Experimental study on wave propagation through granite after high-temperature treatment", Int. J. Rock Mech. Min. Sci., 148, 104946. https://doi.org/10.1016/j.ijrmms.2021.104946
  19. Gao, J., Xi, Y., Fan, L. and Du, X. (2021), "Real-time visual analysis of the microcracking behavior of thermally damaged granite under uniaxial loading", Rock Mech. Rock Eng., 54(12), 6549-6564. https://doi.org/10.1007/s00603-021-02639-0
  20. Ghazvinian, A., Nejati, H.R., Sarfarazi, V. and Hadei, M.R. (2013), "Mixed mode crack propagation in low brittle rock-like materials", Arab. J. Geosci., 6(11), 4435-4444. https://doi.org/10.1007/s12517-012-0681-8
  21. Gong, Q.M. and Zhao, J. (2007), "Influence of rock brittleness on TBM penetration rate in Singapore granite", Tunnell. Undergr. Space Technol., 22(3), 317-324. https://doi.org/10.1016/j.tust.2006.07.004
  22. Gramberg, J. (1989), A Non-conventional View on Rock Mechanics, Rotterdam: Balkema.
  23. Haeri, H. and Marji, M.F. (2016), "Simulating the crack propagation and cracks coalescence underneath TBM disc cutters", Arab. J. Geosci., 9(2), 124. https://doi.org/10.1007/s12517-015-2137-4
  24. Heidari, M., Khanlari, G.R., Torabi-Kaveh, M., Kargarian, S. and Saneie, S. (2014), "Effect of porosity on rock brittleness", Rock Mech. Rock Eng., 47(2), 785-790. https://doi.org/10.1007/s00603-013-0400-0
  25. Hoek, E. and Bieniawski, Z.T. (1965), "Brittle fracture propagation under compression", Int. J. Fract. Mech., 1, 137-55. https://doi.org/10.1007/BF00186851
  26. Hucka, V. and Das, B. (1974), "Brittleness determination of rocks by different methods", Int. J. Rock Mech. Min. Sci. Geomech. Abstracts, 11(10), 389-392. https://doi.org/10.1016/0148- 9062(74)91109-7
  27. Imani, M., Nejati, H.R. and Goshtasbi, K. (2017), "Dynamic response and failure mechanism of Brazilian disk specimens at high strain rate", Soil Dyn. Earthq. Eng., 100, 261-269. https://doi.org/10.1016/j.soildyn.2017.06.007
  28. ISRM (1981), In: Brown, E.T. (ed.), Suggested methods: rock characterization, testing and monitoring, Pergamon, Oxford, p. 211.
  29. Itasca Consulting Group (2008), PFC2D (particle flow code in 2 dimensions), version 4.0, manual. Minneapolis: ICG.
  30. Jaeger, J.C., Cook, N.G. and Zimmerman, R. (2009), Fundamentals of Rock Mechanics, John Wiley & Sons.
  31. Kahraman, S. (2002), "Correlation of TBM and drilling machine performances with rock brittleness", Eng. Geol., 65(4), 269-283. https://doi.org/10.1016/S0013-7952(01)00137-5
  32. Kahraman, S. and Altindag, R. (2004), "A brittleness index to estimate fracture toughness", Int. J. Rock Mech. Min. Sci., 2(41), 343-348. https://doi.org/10.1016/j.ijrmms.2003.07.010
  33. Khodayar, A. and Nejati, H.R. (2018), "Effect of thermal-induced microcracks on the failure mechanism of rock specimens", Comput. Concrete, Int. J., 22(1), 93-100. http://doi.org/10.12989/cac.2018.22.1.093
  34. Kim, J.S., Kim, G.Y., Baik, M.H., Finsterle, S. and Cho, G.C. (2019), "A new approach for quantitative damage assessment of in-situ rock mass by acoustic emission", Geomech. Eng., Int. J., 18(1), 11-20. http://doi.org/10.12989/gae.2019.18.1.011
  35. Lavrov, A. (2003), "The Kaiser effect in rocks: principles and stress estimation techniques", Int. J. Rock Mech. Min. Sci., 40(2), 151-171. https://doi.org/10.1016/s1365-1609(02)00138-7
  36. Mardalizad, A., Scazzosi, R., Manes, A. and Giglio, M. (2018), "Testing and numerical simulation of a medium strength rock material under unconfined compression loading", J. Rock Mech. Geotech. Eng., 10(2), 197-211. https://doi.org/10.1016/j.jrmge.2017.11.009
  37. Marji, M.F. (2014), "Numerical analysis of quasi-static crack branching in brittle solids by a modified displacement discontinuity method", Int. J. Solids Struct., 51(9), 1716-1736. https://doi.org/10.1016/j.ijsolstr.2014.01.022
  38. Marji, M.F. (2015), "Simulation of crack coalescence mechanism underneath single and double disc cutters by higher order displacement discontinuity method", J. Central South Univ., 22(3), 1045-1054. https://doi.org/10.1007/s11771-015-2615-6
  39. Meng, F., Zhou, H., Zhang, C., Xu, R. and Lu, J. (2015), "Evaluation methodology of brittleness of rock based on post-peak stress- strain curves", Rock Mech. Rock Eng., 48(5), 1787-1805. https://doi.org/10.1007/s00603-014-0694-6
  40. Mughieda, O.S. and Khawaldeh, I. (2006), "Coalescence of offset rock joints under biaxial loading", Geotech. Geol. Eng., 24, 985-999. https://doi.org/10.1007/s10706-005-8352-0
  41. Nazerigivi, A., Nejati, H.R., Ghazvinian, A. and Najigivi, A. (2017), "Influence of nano-silica on the failure mechanism of concrete specimens", Comput. Concrete, Int. J., 19(4), 429-434. https://doi.org/10.12989/cac.2017.19.4.429
  42. Nazerigivi, A., Nejati, H.R., Ghazvinian, A. and Najigivi, A. (2018), "Effects of SiO2 nanoparticles dispersion on concrete fracture toughness", Constr. Build. Mater., 171, 672-679. https://doi.org/10.1016/j.conbuildmat.2018.03.224
  43. Nejati, H.R. and Ghazvinian, A. (2014), "Brittleness effect on rock fatigue damage evolution", Rock Mech. Rock Eng., 47(5), 1839-1848. https://doi.org/10.1007/s00603- 013-0486-4
  44. Nejati, H.R. and Moosavi, S.A. (2017), "A new brittleness index for estimation of rock fracture toughness", J. Min. Environ., 8(1), 83-91. https://doi.org/10.22044/JME.2016.579
  45. Nejati, H.R., Nazerigivi, A., Imani, M. and Karrech, A. (2020), "Monitoring of fracture propagation in brittle materials using acoustic emission techniques-A review", Comput. Concrete, Int. J., 25(1), 15-27. http://doi.org/10.12989/cac.2020.25.1.015
  46. Panaghi, K., Golshani, A. and Takemura, T. (2015), "Rock failure assessment based on crack density and anisotropy index variations during triaxial loading tests", Geomech. Eng., Int. J., 9(6), 793-813. http://doi.org/10.12989/gae.2015.9.6.793
  47. Park, C.H. and Bobet, A. (2009), "Crack coalescence in specimens with open and closed flaws: A comparison", Int. J. Rock Mech. Min. Sci., 46, 819-829. https://doi.org/10.1016/j.ijrmms.2009.02.006
  48. Paul, B. (1968), "Macroscopic criteria for plastic flow and brittle fracture", Fracture, 2, 313-496.
  49. Potyondy, D.O. (2010), "A grain-based model for rock: approaching the true microstructure", Proceedings of Rock Mechanics in the Nordic Countries, pp. 9-12.
  50. Potyondy, D.O. (2012), "A flat-jointed bonded-particle material for hard rock", Proceedings of the 46th US Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association.
  51. Potyondy, D. (2013), PFC3D Flat-Joint Contact Model (version 1), Itasca Consulting Group, Inc., Minneapolis, MN, USA, Technical Memorandum ICG7234-L, June 25, 2013.
  52. Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 41(8), 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011
  53. Protodyakonov, M.M. (1962), "Mechanical properties and drillability of rocks", Proceedings of the 5th Symposium on Rock Mechanics, University of Minnesota Minneapolis, MN, USA, pp. 103-118.
  54. Protodyakonov, M.M. (1963), "Mechanical properties and drillability of rocks", Proceedings of the 5th Symposium Rock Mechanics, University of Minnesota, pp. 103-118.
  55. Ren, X., Chen, J.S., Li, J., Slawson, T.R. and Roth, M.J. (2011), "Micro-cracks informed damage models for brittle solids", Int. J. Solids Struct., 48(10), 1560-1571. https://doi.org/10.1016/j.ijsolstr.2011.02.001
  56. Sagong, M. and Bobet, A. (2002)," Coalescence of multiple flaws in a rock-model material in uniaxial compression", Int. J. Rock Mech. Min. Sci., 39, 229-241. https://doi.org/10.1016/S1365-1609(02)00027-8
  57. Stefanov, Y.P. (2008), "Numerical modeling of deformation and failure of sandstone specimens", J. Min. Sci., 44(1), 64-72. https://doi.org/10.1016/0013-7944(94)00201-R
  58. Szwedzicki, T. and Shamu, W. (1999), "The effect of material discontinuities on strength of rock samples", Proceedings of Australasian Institute of Mining and Metallurgy, 304(1), 23-28.
  59. Villaescusa, E. (2014), Geotechnical Design for Sublevel Open Stopping, CRC Press.
  60. Wang, S.Y., Sloan, S.W., Sheng, D.C., Yang, S.Q. and Tang, C.A. (2014), "Numerical study of failure behaviour of pre-cracked rock specimens under conventional triaxial compression", Int. J. Solids Struct., 51(5), 1132-1148. https://doi.org/10.1016/j.ijsolstr.2013.12.01
  61. Wawersik, W. and Fairhurst, C. (1970), "A study of brittle rock fracture in laboratory compression experiments", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 7, 561-575. https://doi.org/10.1016/0148-9062(70)90007-0
  62. Wu, S. and Xu, X. (2016), "A study of three intrinsic problems of the classic discrete element method using flat-joint model", Rock Mech. Rock Eng., 49(5), 1813-1830. https://doi.org/10.1007/s00603-015-0890-z
  63. Xu, X., Wu, S., Gao, Y. and Xu, M. (2016), "Effects of microstructure and micro-parameters on Brazilian tensile strength using flat-joint model", Rock Mech. Rock Eng., 49(9), 3575-3595. https://doi.org/10.1007/s00603-016-1021-1
  64. Yarali, O. and Soyer, E. (2011), "The effect of mechanical rock properties and brittleness on drillability", Scientif. Res. Essays, 6(5), 1077-1088. https://doi.org/10.5897/SRE10.1004
  65. Yoshikawa, S. and Mogi, K. (1981), "A new method for estimation of the crustal stress from cored rock samples: laboratory study in the case of uniaxial compression", Tectonophysics, 74(3-4), 323-339. https://doi.org/10.1016/0040-1951(81)90196-7